2. Universal gate set, quantum circuit

Isaac H. Kim (UC Davis)

Universal quantum gates

- The goal is to generate an arbitrary unitary in $U(2^n)$.
- The Lie algebra of $U(2^n)$ consists of $2^n \times 2^n$ anti-Hermitian matrices.
- Claim: Single- and two-qubit gates generate the universal gate set.

$$\mathcal{H} = \bigotimes_{i=1}^{N} \mathcal{H}_{i}$$

Single-qubit gates

- Basis: $|0\rangle, |1\rangle$
- General form: $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $UU^{\dagger} = U^{\dagger}U = I$.
- Examples $6_{\mathfrak{I}}^{*}$, $6_{\mathfrak{I}}^{*}$, C = $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - $\exp(i\theta X)$, $\exp(i\theta Y)$, $\exp(i\theta Z)$, ...

Two-qubit gates

- Basis: $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$
- Examples: CNOT, CZ

n-qubit gates

- Basis: $|x\rangle$, where x is a *n*-bit string.
- Examples: Pauli product operators: $P_1 \otimes P_2 \otimes \ldots \otimes P_n$. $P_1 \ldots P_n \in \{1, x, y, z\}$

Universality

- To prove universality, it suffices to show that one can generate $\exp(iH\delta t)$ for any Hermitian operator H, with $\delta t \ll 1$.
- Basic idea: Decompose H into the canonical *Pauli basis* and apply infinitesimal rotation generated by each Pauli Product operators.

$$U = \left(\exp(iHst)\right)^{\binom{T}{ET}} \rightarrow interr$$

$$H = \underbrace{\Xi}_{p} d_{p} P$$

$$H = \underbrace{F}_{p} d_{p} d_{p} P$$

$$H = \underbrace{F}_{p} d_{p} d_$$

Experiments

As of now (Year 2021), the one and twoqubit gates have been implemented successfully in superconducting qubits, ion traps, neutral atoms, NV-centers, ... (=pretty much any quantum technology)

Noise

- In real experiments, no gate is implemented perfectly.
- Current noise rate: $10^{-3} \sim 10^{-2}$, depending on the technology.
- This means that we cannot run a long computation and hope to get a correct result.

State-of-the-art quantum algorithms

- As of now, quantum algorithms with commercial applications which are (almost) guaranteed to work requires at least $10^8 \sim 10^9$ gates.
- To get a correct result with high probability, the error rate must be much smaller than $10^{-8} \sim 10^{-9}$.
- Current consensus is that we won't be able to achieve that without quantum error correction.

Quantum Error Correction

- Using quantum error correction, we can reduce the error.
- However, once we start using quantum error correction, the set of gates we can use becomes more restrictive.
- In fact, any reasonably continuous gate set, e.g., {exp(*iθZ*) : θ ∈ ℝ} is incompatible with quantum error correction. [Eastin and Knill (2009)]

 $Z = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

Universal Fault-tolerant quantum gates

- Fortunately, there is a discrete set of universal gate set which is compatible with quantum error correction.
- There are different choices, but the following two is the standard.
 - Clifford + T
 - Hadamard + Toffoli

Solovay-Kitaev theorem

[Solovay (1995), Kitaev (1997)] Given a universal gate set, one can find a gate sequence of length $O(\log^c(1/\epsilon))$ to approximate arbitrary unitary with an error of ϵ .

So, being restricted to a discrete gate set is not a problem.

Cliffords

- Clifford gates are unitaries U such that for every Pauli Product operator P, UPU^{\dagger} , is again a Pauli Product Operator.
- The Clifford group (consisting of Clifford gates) is generated by $\underline{H}, \underline{S}$, and \underline{CNOT} .
- Clifford gates are cheap, compared to non-Clifford gates. (Toult to large & C)

$$H = \frac{1}{12} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 2 & 0 \\ 0 & n \end{pmatrix}$$

$$f \qquad f$$

$$f = f \quad f$$

$$f \qquad f$$

ĸ

Non-Clifford gates

- A quantum computation consisting of Clifford gates can be efficiently simulated on a classical computer. [Gottesman-Knill theorem]
- To utilize the full power of quantum computation, we need gates outside of the Clifford group. These are called as non-Clifford gates. $\tau = \begin{pmatrix} r & 0 \\ 0 & \sqrt{3} \end{pmatrix}$

ex) T-gate, Toffoli gate

- Non-Clifford gates are more expensive than Clifford gates. They are slower and requires more qubits to implement.
- Most of the time, the cost of a quantum algorithm is determined by the number of non-Clifford gates.

Rotations

- Rotations like $\exp(i\theta Z)$ may seem like the easiest gate you can implement.
- However, in a fault-tolerant quantum computer, this is even more expensive than non-Clifford gates.
- At this point, the (near-)optimal gate sequence can be efficiently computed on a classical computer. For precision ϵ , for general angle, we can implement this using
- $3\log_2(1/\epsilon) + O(\log\log(1/\epsilon))$ T-gates. This is optimal. [Ross and Selinger (2012)].
- For $\epsilon \approx 10^{-10}$, we need ≈ 100 T-gates. $7 \leq \log_{10}(1/\epsilon) + 0 (\log(1/\epsilon))$

Cost analysis of different gates

Using the current best known fault-tolerant gate implementations, the number of qubits needed x time is (roughly):

- Clifford: <u>1</u> CNOT, CZ, H, S
 T-gate: <u>100</u> <u>2</u>-quit pares
- Rotation: <u>10,000</u>

Summary

- One- and two-qubit gates are universal.
- Fault-tolerant universal gate set: Clifford + non-Clifford(T-gate or Toffoli)
- Clifford \ll non-Clifford \ll Arbitrary rotation