Nonlinear optical and terahertz spectroscopy of topological semimetals

Liang Wu Department of Physics & Astronomy University of Pennsylvania

1

Part 1 :band geometry

- Introduction to nonlinear optics and a new perspective on band geometry
- Discovery of the largest second harmonic generation (SHG) in polar Weyl semimetals TaAs

Acknowledgements

Joe Orenstein (UCB) Shreyas Patankar (UCB)

Darius Torchinsky (Temple)

Joel Moore (UCB)

Takahiro Morimoto (UCB) Adolfo Grushin (UCB) Dan Parker (UCB) **James Analytis (UCB)**

Nityan Nair (UCB)

Motivation

Topology

Nonlinear optical effects

- Quantum Hall effect
- Topological insulators
- Weyl semimetal

- Photovoltaics
- Second harmonic generation

Quantized Hall conductance (von Klitzing, *PRL*, 80; Chang, Xue. *Science*, 2013) Quantized Terahertz Faraday & Kerr rotation (Wu, Armitage. *Science* 2016)

Topological nonlinear optics?

Guidance to find better photovoltaics based on topological materials ?

 $J_i(0) \propto \sigma^{(2)} I(\omega) \rightarrow$ "bulk photovoltaic effect"

4

Part 1

- Introduction to nonlinear optics and a new perspective on band geometry
- Discovery of the largest second harmonic generation (SHG) in polar Weyl semimetals TaAs

Weyl semimetals (WSMs)

PHYSICAL REVIEW B 83, 205101 (2011)

Ś

Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates

Xiangang Wan,¹ Ari M. Turner,² Ashvin Vishwanath,^{2,3} and Sergey Y. Savrasov^{1,4}

$$H(\mathbf{k}) = \varepsilon_0 \sigma_0 \pm \hbar v_{\rm F} (\mathbf{k} - \mathbf{k}_0) \cdot \boldsymbol{\sigma}$$

(H. Weyl 1929)

"3D graphene"

Broken Inversion/Time Reversal Symmetry

Murakami. *New. J. Phys.* (2007) Wan, *et al. PRB.* (2011)

Band topology in WSMs

Berry curvature

 $A = -i\langle u_k | \nabla_k u_k \rangle$ $\mathbf{\Omega}(\mathbf{k}) = \nabla_k \times A(\mathbf{k})$

Think of like magnetic

field living in k-space

(Monopoles)

Berry (geometrical) phase

Sir Michael Berry (1984)

Inversion symmetry

$$\Omega(\mathbf{k}) = \Omega(-\mathbf{k})$$

Time-reversal symmetry

$$\Omega(\mathbf{k}) = -\Omega(-\mathbf{k})$$

With Both symmetries

 $\Omega = 0$

7

Weyl points are stable unless they meet in momentum space and annihilate each other.

 $\Omega(\mathbf{k})d\mathbf{k}=C_i$

T and I breaking allow new optical phenomena.

Broken T symmetry

$$\langle \mathbf{\Omega}(\mathbf{k}) \rangle \neq 0$$

 $\Omega_n(-k) = \Omega_n(k)$

 $j_x = \sigma_{xy} E_y$

Intrinsic Anomalous Hall effect (DC transport)

Faraday and Kerr rotation without applied B

$$\sigma_{xy} = \frac{e^2}{\hbar} \int_{\mathrm{BZ}} \frac{d^2k}{(2\pi)^2} \Omega_{k_x k_y}$$

Broken I symmetry

$$\langle \mathbf{\Omega}(\mathbf{k}) \rangle = 0$$

 $\Omega_n(-k) = -\Omega_n(k)$

$$J_i = \sigma_{ijk} E_j E_k$$

Second order nonlinearity

Zoo of acronymic effects! SHG, DFG, CPGE, LPGE, etc.

Material realization---Transition metal monopnictides

WSMs TaAs, TaP, NbAs, NbP break inversion and are polar metals (or ferroelectric metals) !

4mm point group

Weng et al., **PRX** (2015) Huang, et al., **Nat. Comm.** (2015) Xu, et al, **Science** (2015) Lv, et al, **PRX** (2015)

GaAs breaks inversion, but is not polar.

Are there new/enhanced transport and optics effects in inversion-breaking WSMs associated Berry monopoles?

Past nonlinear optics

Focused on probing light conversion and symmetry breaking.

Why nonlinear optics experiments on WSMs?

How textbooks calculate nonlinear optical susceptibility....

$$\begin{split} \chi^{(2)}_{\mu\alpha\beta}(-2\omega,\omega,\omega) & \text{Virtual state} \\ &= -i \frac{1}{32\varepsilon_0} \left(\frac{e}{m_0 \pi \omega}\right)^3 \sum_{n,n',n''} \int_{\text{BZ}} d^3 \mathbf{k} & \text{Virtual state} \\ &\times f_{n\mathbf{k}} \Biggl\{ \frac{p_{nn'}^{\mu} p_{n'n''}^{\alpha} p_{n''n'}^{\beta} + p_{nn'}^{\mu} p_{n'n''}^{\beta} p_{n''n''}^{\alpha} p_{n''n}^{\alpha}}{[E_{n'n}(\mathbf{k}) - 2\hbar \omega] [E_{n''n}(\mathbf{k}) - \hbar \omega]} & \text{Virtual state} \\ &+ \frac{p_{nn'}^{\alpha} p_{n'n''}^{\mu} p_{n''n'}^{\beta} + p_{nn'}^{\beta} p_{n'n''}^{\mu} p_{n''n}^{\alpha}}{[E_{n'n}(\mathbf{k}) + \hbar \omega] [E_{n''n}(\mathbf{k}) - \hbar \omega]} & \text{Virtual state} \\ &+ \frac{p_{nn'}^{\beta} p_{n'n''}^{\alpha} p_{n''n''}^{\mu} + p_{nn'}^{\alpha} p_{n''n''}^{\beta} p_{n''n''}^{\mu}}{[E_{n'n}(\mathbf{k}) + \hbar \omega] [E_{n''n}(\mathbf{k}) + 2\hbar \omega]} \Biggr\}, & \text{Ground state} \\ &\mu, \alpha, \beta \in \{x, y, z\}. \end{split}$$

Why nonlinear optics experiments on WSMs? --- Probing Berry Connection & band topology

 $\boldsymbol{a}_n(\boldsymbol{k}) = -i \langle u_{n\boldsymbol{k}} | \nabla_{\boldsymbol{k}} u_{n\boldsymbol{k}} \rangle$

$$\phi_{12} = \text{Im}(\log v_{12}^0)$$

$$R_k = \left[\frac{\partial \varphi_{12}}{\partial k} + a_1 - a_2\right]$$

"Shift vector" measures the change of intracell coordinates in the transition between the initial and final states.

Von Baltz **PRB** (1979) (1981) ; Sturman & Fridkin & Belinicher **SPU** (1980) (1992); Sipe & Shkrebtii **PRB.** (2000); Young & Rappe **PRL**

2012;Morimoto & Nagaosa **Sci. Adv.** (2016)

$$\operatorname{Re}\left\{\sigma_{zzz}^{(2)}(\omega, \mathbf{0})\right\} \cong \frac{\pi e^{3}}{2\hbar\omega^{2}} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} |v_{z,12}|^{2} R_{zz}(\mathbf{k}) \\ \times \left[-\delta(\epsilon_{21} - \hbar\omega) + \right]$$
13

2nd order nonlinear optical effect in general $J_i(\omega_1 \pm \omega_2) = \sigma_{ijk}(\omega_1 \pm \omega_2)E_j(\omega_1)E_k(\omega_2)$ **sum** and **difference** frequency generation

Second harmonic generation (SHG)

In materials without inversion symmetry,

 $\mathbf{P} = \mathbf{P}_0 + \epsilon_0 \chi_e \mathbf{E} + \epsilon_0 \chi^{(2)} \mathbf{E}^2 + \cdots$ $P_i(2\omega) = \epsilon_0 \chi_{ijk}(2\omega) E_j(\omega) E_k(\omega)$

Bloembergen & Pershan. Phys. Rev (1962)

Mirror plane xz & yz, but not xy

4mm point group determines three non-zero χ_{ijk} .

Part 1

- Introduction to nonlinear optics and a new perspective on band geometry
- Discovery of the largest second harmonic generation (SHG) in polar Weyl semimetals TaAs

SHG on TaAs (112) surface

Dominating χ_{zzz} . (effectively 1D-like)

Anisotropy $\chi_{zzz}/\chi_{zxx}, \chi_{zzz}/\chi_{xzx}$ 30-100 in TaAs ! Materials with same χ_{ijk} tensor have anisotropy factor 1-2. e.g. LiNbO₃, BaTiO₃

Wu, et al. arXiv:1609.04894 Nat. Phys. (2016)

Largest SHG in existing materials

TaAs (100) will have SHG intensity >100 times bigger than GaAs (111)!

Other WSMs TaP & NbAs

Material	$ \chi_{ijk} $	$ \chi ~(pm/V)$	Fundamental wavelength (nm)
TaAs	χ_{zzz}	$7200 \\ (\pm 1100)$	800
GaAs	χ_{xyz}	700*	810
ZnTe	χ_{xyz}	$500, 900^*$	800, 700
BaTiO ₃	χ_{zzz}	30	900
BiFeO ₃	χ_{zzz}	30-40	1550, 800
LiNbO ₃	χ_{zzz}	50	852
BiFeO ₃	χ_{zzz}	260*	500
BaTiO ₃	χ_{zzz}	200*	170
PbTiO ₃	χ_{zzz}	400*	150

Wu, et al. arXiv:1609.04894 Nat. Phys. 13, 350(2017)

Spectroscopy of SHG response in range 0.4 eV – 1.6 eV

For fundamental and SH electric field along polar axis

Resonance enhanced peak

Weng *et al.,* **PRX** (2015) Huang, *et al.,* **Nat. Comm.** (2015) J. Buckeridge et al. **PRB**, (2016)

arXiv:1804.06973, PRB (2018)

Change of polar pattern

arXiv:1804.06973, PRB (2018)

Is Weyl physics related?

In addition, the calculated SH susceptibility χ^z_{zz} and the ratio of χ^x_{zx}/χ^z_{zz} are 6200 pm/V and 0.3 respectively, which are quite closed to the measured value 7200 pm/V and 0.031 at low temperature [45, 59].

Zhang, ... Yan, Naogaosa arXiv.1803.00562, PRB (2018)

Summary

- Discovery of the largest SHG in WSMs TaAs, TaP and NbAs
- A new perspective nonlinear optics in probing Berry connection/curvature

Wu, et al. arXiv:1609.04894 Nat. Phys. 13, 350 (2017)

