The 13th School of Mesoscopic Physics: Mesoscopic Quantum Devices May 24, 2024 Pohang, Korea

Part I Basics of semiconductor QC Part II Advances in semiconductor QC

RIKEN Center for Emergent Matter Science & Quantum Computing

Seigo Tarucha

- 1. Fundamentals for quantum computer
- 2. Advances in spin quantum computer

RIKEN Research Center for Quantum Computing

Optical

Semiconductor

 Spin-based QC in 28Si

ST and DL

Quantinuum Model H1

ement-2C Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Spin Qubit

$$|\phi> = a|0> + b|1>$$

Qubit = Superposition of |0> and |1>

Only for operation time < coherence time

Spin Qubit Manipulation

Spin Manipulation for Quantum Computing

Quantum Entanglement

2qubit system

|A>=a|0> + b|1> |B>=c|0> + d|1>

Spin singlet |S>, Spin triplet |T₀>
|S>=
$$\frac{|\downarrow > |\uparrow > -|\uparrow > |\downarrow >}{\sqrt{2}}$$
 |T₊>=|\uparrow>| ↑>
|T₀>= $\frac{|\downarrow > |\uparrow > +|\uparrow > |\downarrow >}{\sqrt{2}}$
|T₋>= |↓>| ↓>

Logical Calculation

Fidelity > 99%

Readout Fidelity > 99%

Scale-up of qubit devices required for large scale calculation but all operations must complete within dephasing time.

DiVincenzo's criteria

- 1. Long coherence time
- 2. Universal quantum gate set (Single and two-qubit gates)
- 3. Quantum bit readout
- 4. Quantum bit initialization
- 5. Qubit scalability

Summary: Why quantum computation fast?

1. Superposition of n qubits in 2^n basis states {|000..0>,|000..1>,.....,|111..1>}

$$|\varphi\rangle = \frac{1}{2^{\frac{n}{2}}} [|000..0\rangle + |000..1\rangle + + |111..1\rangle]$$

2. Quantum entanglement

 $\frac{|0>|0>\pm|1>|1>}{\sqrt{2}}$ Correlation in 2 or more qubits Used in logical calculations

3. Quantum parallelism

Parallel calculation of superposed n qubits

$$U|\varphi > = \frac{1}{2^{\frac{n}{2}}} [U|000..0 > + U|000..1 > +..... + U|111..1 >]$$

Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Spin Qubit Manipulation using Concept of Spin Resonance

Rotation about x-axis

 $z |0\rangle$ θ ϕ x ϕ y $|1\rangle$

 $\boldsymbol{\theta}$ control by $\boldsymbol{B}_{\text{AC}}$ burst

 $\boldsymbol{\phi}$ control by \boldsymbol{B}_{AC} phase

Physical Implementation of Spin Qubits : Spin Resonance for Single Electrons in QD

Generation of Local AC Magnetic Field

But the generated AC field is weak and the qubit rotation is slow.

Spin Resonance with Spin-electric Coupling

0.3 MHz

RIKEN, Wisconsin/TuDelft, Princeton, Sherbrook

Grenoble/Leti

µ-magnet

Spin-orbit int.

Spin Qubits in Si QD Devices

n-MOS with μ -wave antenna

M. Veldhorst et al. Nat. Nanotechnol. 2014

Si/SiGe with μ -magnet

K. Takeda et al. Nat. Nanotechnol. 2021

P donors in Si with μ -wave antenna

Y. He et al. Nature 2019

p-MOS with spin-orbit effect

R, Maurand et a. Nat. Commun. 2016

LC. Camenzind et al. Nat. Electron. 2020

Rotation about x-axis

Measurement of Superposition State

Spin Echo Measurement

Hahn Echo and CPMG

J. Yoneda et al., Nat. Nanotechnol. 2018

High-fidelity Two-qubit Gates

Two-qubit gate using spin-exchange interaction and Zeeman energy difference

Exchange coupling controlled by tunnel coupling (up to 10MHz)

 $[\]Delta E_{z} \sim a \text{ few 100 MHz}$

 $\Delta E_7 >> J$

"Heisenberg" "Ising"

$$H_{\text{int}} = \frac{J}{4} \sigma_1 \cdot \sigma_2 \approx \frac{J_{12}}{4} \sigma_{z1} \sigma_{z2}$$

CPHSE (CZ)

Energy shift $\Delta E=J/2$ for time t generates	In	Out
a phase accumulation in $ \uparrow\downarrow >$ and $ \downarrow\uparrow >$:	11	$+ \uparrow\uparrow\rangle$
$ \uparrow\downarrow\rangle \rightarrow e^{\frac{i\Delta Et}{\hbar}} \uparrow\downarrow\rangle = i \uparrow\downarrow\rangle$ for Jt= $\frac{\pi}{\hbar}$	↑↓ 〉	<mark>i</mark> ↑↓⟩
	$ \downarrow\uparrow\rangle$	i ↓↑⟩

 $|\downarrow\downarrow\rangle$

 $+|\downarrow\downarrow\rangle$

... represented by a unitary transformation:

$$U_{CZ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = Z_1(-\frac{\pi}{2})Z_2(-\frac{\pi}{2}) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation about
z-axis by $-\pi/2$

CPHSE (CZ)

If Q2 is $|\uparrow>$, clockwise rotation of Q1 about z-axis or positive phase ϕ accumulation, while if Q2 is $|\downarrow>$, counterclockwise rotation of Q1 or negative phase ϕ accumulation.

CPHASE is the case for $\phi = \pi/2$.

CPHASE

Q2 phase accumulation measurement

CNOT

 $U_{CNOT12} = (I_1 \otimes U_{Hadamard2}) U_{CPhase} (I_1 \otimes U_{Hadamard2})$

$$U_H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

$$U_{CNOT12} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

U_{CNOT}|00> = |00> |01> = |01> |10> = |11> n |11> = |10>

The second spin only flips when the first spin is in the up-state (|1>).

Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Spin Readout

Information conversion from spin to charge

Spin-dependent dot to lead tunneling

Pauli spin blockade between dots

J. Elzerman et al. Nature 2004

Charge State Detection

Measurement of conductance change with N

Conductance

A. Morello et al., Nature 2010

Advanced Method of Charge Sensing

Initialization

Final state after spin readout is |0> = Initialization

Long-time waiting (>> T1) provides |0>.

Application of Entanglement I: Quantum Non-demolition Readout using an Ancillary Qubit

... useful to improve the readout and initialization fidelity

Previous work Quantum optics: Grangier et al. Nature 1998; Nougues et al. Nature 1999. Cavity QED with Rydberg atoms: Geremia et al. Science 2004 Trapped single electrons: Peil et al. PRL 1999 Superconducting circuits: Lupascu et al. Science 2007 Nuclear spin with donor P: Pla et al. Nature 2013

QND Measurement with Si/SiGe DQD

Improved Readout and Initialization Fidelity by QND Measurement

T. Nakajima et al. Nature Nanotechnol. 2019; J. Yoneda et al. Nature Commun. 2020

Accumulation of repeated QND ancilla measurements

Measurement fidelity : By repeated QND measurement $F_{M}^{\downarrow(\uparrow)}$ = 88 % for n=1 (60 µs << T1) 95.6% (94.6%) for n = 20 (1.2 msec << T1)
Measurement-based Initialization

T. Kobayashi et al. (2021)

Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Dephasing and Depolarization of Spin

Charge Noise and Nuclear Spin Noise in GaAs and Si

- 1) Ensembles of nuclear spins cause statistical fluctuations of B field
- Two-level fluctuators (impurities, defects,...) cause fluctuation of electron position. This causes fluctuation of electron Zeeman energy in the presence of magnetic field inhomogeniety or spin-orbit interaction.

Phase Measurement of Spin

|1>=|↑>

Prepare a state along x-axis : $\frac{|0>+|1>}{\sqrt{2}}$

Rotation about z-axis with detuning frequency $\omega = \omega_L - \omega_{AC}$ (<< ω_L)

$$|\varphi>=rac{|0>+e^{i\omega t}|1>}{\sqrt{2}}$$
 Rotating frame about z with ω_{AC}

After $\pi/2$ rotation about x-axis

Probability of finding the state in $|\downarrow >$

Ramsey Measurement to Evaluate the Fluctuating B_{Zeeman}

GaAs: 10⁵ to 10⁶ n-spins

²⁸Si (0.08% ²⁹Si): 10 to 10² n-spins

Dynamics of Nuclear Spin Fluctuation

Magnetic, Non-Markov, Non-ergodic, Diffusive,...

Reduced Dephasing of Single Spins by Fast Measurement

- Non-ergodic spin dynamics in the fluctuating environment is demonstrated
- Two-orders of magnitude improvement of the spin coherence with a feedback control is shown

Real-time Feedback of Spin Noise Measurement to Control Spin Dynamics

300

Nuclear Spins in GaAs, nat. Si and 28Si

	GaAs	Nat. Si	28Si
Nuclear spin	100%	4.7%	0.08%
T2*	10 nsec	1.5 μsec	10 μsec
Noise source	nuclear spin (>> charge noise)	nuclear spin (> charge noise)	charge noise (>> nuclear spin)

$$H_{\rm HF} = A |\psi(\mathbf{x})|^2 \left(\frac{I_+ S_- + I_- S_+}{2} + I_Z S_Z\right)$$

T1 > 10 to 1000 msec

Statistical fluctuation : $\delta A = A/\sqrt{N}$

Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Why Silicon?

²⁸Si

Long-intrinsic coherence time in isotopically purified ²⁸Si

Compatibility with CMOS based manufacturing techniques

Possible high-temperature operation at > 1 K A larger number of qubits On-chip integration with cryo-electronics

49

Integration of Quantum Processors and Cryo-CMOS Controller

B. Patra et al. IEEE J. Solid-State Circuits, 33, 309 (2018)

E. Charbon et al., IEDM Tech. Dig., 5 (2016)

F. Sebastiano et al., Proc. 54th Annu. Des. Autom. Conf. (DAC) 13-1 (2017).

C. Thomas et al. arXiv: 2206.14082

Si Qubits at High Temperature > 1 K

Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Challenges in Si QC

o - data gubit

High fidelity in two-qubit gates Error correction Scale-up ... not yet well studied in semiconductor QC before

Introduction of semiconductor manufacturing tech. for scale-up

A. G. Fowler et al., Phys. Rev. A (2009)

Error correction thresholds

Fidelity (1 qubit) > 99.9% Fidelity (2 qubit) > 99% Initialization F > 99% Readout F > 99%

Micro-magnet Method for Implementing Spin Qubits Based on ESR

Y. Tokura et al. PRL 2008; M. Pioro-Ladriere et al. Nature Phys. 2011

Three Qubit Si/SiGe Device with a Micro-magnet

High-fidelity of three single qubits

Fidelity = 99.6 % on average for Nat. Si/SiGe = 99.8 % on average for 28Si/SiGe

Toward Multiple Qubits

6 qubits in 1x6 28Si/SiGe QDs

Fidelity = 99.77 to 99.96 %

Spin Qubits using a μ -magnet Method

Environment Noise Limited Fidelity in ²⁸Si/SiGe

J. Yoneda et al. Nat. Nanotechnol. 2018

High-fidelity Two-qubit Gates

Two-qubit gate using spin-exchange interaction and Zeeman energy difference

Exchange coupling controlled by tunnel coupling (up to 10MHz)

 $[\]Delta E_z \sim a \text{ few 100 MHz}$

 $\Delta E_7 >> J$

"Heisenberg" "Ising"
$$H_{\text{int}} = \frac{J}{4} \sigma_1 \cdot \sigma_2 \approx \frac{J_{12}}{4} \sigma_{z1} \sigma_{z2}$$

Single-step Two Qubit Gate

Conditional transitions to rotate one of the two spins depending on the other spin's orientation, up or down

Single-step Two Qubit Gate

target contro	ol
$CNOT \downarrow \downarrow >= $	↓↓>
CNOT ↑↓ >=	↑↓>
<i>CNOT</i> ↓↑>=	^1>
<i>CNOT</i> 1 >=	↓1>

With resonant μ -wave excitation, left spin flips when right spin up

A. Noiri et al. Nat. Commun. 2018

Fidelities of Two Qubit Gates

A. Noiri et al. Nature 2022

Clifford gate random benchmark

• The Rabi freq. range of 3 to 5 MHz is an order of magnitude higher than in previous work.

Two-spin qubit gate fidelity

> 99.5 % for 28Si/SiGe from TuDelft, Nature 2022; > 99% for 28Si/SiGe from Princeton Adv. Sci. 2022 99.4 % for two 31P nuclear qubits with a shared electron from UNSW, Nature 2022

Single and Two-qubit Gate Fidelities

A. Noiri et al. Nature 2022

• The freq. range of 3 to 5 MHz is an order of magnitude higher than in previous work.

Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Errors in Quantum Bits

$$\phi(t)$$

$$\phi(t)$$

$$\theta(t)$$

$$|\varphi\rangle = \cos\frac{\theta}{2} |0\rangle + e^{i\phi} \sin\frac{\theta}{2} |1\rangle$$

Fluctuation of ϕ : phase error Fluctuation of θ : bit error

Detect and correction of phase error

Phase error >> Bit error in semiconductors

Circuit of 3Q Quantum Error Correction (QEC)

QEC for phase error (Phase error rate >> Bit error rate)

Generation of GHZ State

Fidelity 88%

Error Correction by Single Step Toffoli Gate

MJ Gullans and JP Petta, PRB 2019

1 Qubit Phase Error Correction Experiment

K. Takeda et al. Nature 2022

Nat.Si/SiGe

Outline of 3Q Quantum Error Correction

• Corrected infidelity $1 - F(p) = O(p^2)$

 $p=sin^2\theta/2$

• Improvement for p < 0.5 if all qubits have the same error rate
QEC for Three-qubit Phase Error

Indication of presence of correlated phase error between qubits

Error Detection and Correction

measurement

Realizing Repeated Quantum Error Correction in a Distance-Three Surface Code Krinner et al. Nature 2022

17 physical qubits

3x3 data qubits4 & 4 auxiliary qubits2 or 4 data qubit measurements

Suppressing quantum errors by scaling a surface code logical qubit -Exceeding the QEC break-even point-

Google Quantum AI, Nature 2023

Superconducting 49 qubits

Distance 5 5x5 data qubits 24 measurement qubits

Data qubit (d²)
Measure qubit (d² – 1)
Unused
Subset distance-3

Fast, High-fidelity Spin Readout for QEC

Singlet-triplet probability using Pauli Spin Blockade

K. Takeda et al. npj QI (2024)

Part I Basics of semiconductor QC

- Concepts of quantum bits and computation
- Implementation of single and two qubit gates
- Readout and initialization
- Quantum coherence and phase noise

Part II Advances in semiconductor QC

- Features of quantum computing in silicon
- High-fidelity quantum gates and readout
- Quantum error correction
- Multi-qubit devices for scale-up

Probing single electrons across 300 mm spin qubit wafers

Neyens et al., arXiv: 2307.04812v1

Intel

Component	Yield	Good count	Total count
Ohmics	100%	1624	1624
Gates	100%	10208	10208
Quantum dots	99.8%	3703	3712
12QD arrays	96%	223	232

Development of Multi-qubit Devices

2D array

Industrial tech. for Si/SiGe and MOS 1D qubit array

12 qubit chips in Conf. talks by J. Clark, Intel

Quantum link

Jun 15 2023

https://www.intc.com/news-events/pressreleases/detail/1626/intels-new-chip-toadvance-silicon-spin-qubit-research

> Shuttling-based two-qubit gate Noiri et al., Nat. Commun. 2022

Toward Multiple Qubits

2x2 qubits in Si/SiGe

FK. Unseld et al. APL 2023 (APS March 2024)

2x2 qubits in Ge/SiGe QDs

N.W. Hendrickx et al. Nature 2020

3x3 GaAs QDs

P-A. Mortemousque et al. Nat. Nanotechnol. 2020

4x4 Ge QDs with shared control

F. Borsoi et al. Nat. Nanotechnol 2023

Quantum Links between Qubits

Quantum Link with Spin-photon Coupling

Spin-photon coupling

Photon-mediated spin-spin coupling

Spin-photon Coupling in a Superconducting Cavity

Spin-photon coupling in a superconducting resonator (~6 GHz) ²⁸Si/SiGe

N. Samkharadze et al., Science 2018

X. Mi et al., Nature 2018

Photon-mediated coupling of two spins over 250 μ m apart

P. Harvey-Collard et al., PRX 12, 021026 (2022); J. Dijikema et al., arXiv:2310.16805v1 Note: GaAs QD, A.J. Landig et al., Nature 2018; Carbon nanotube. T. Cubaynes et al., npj QuInfo 2019

²⁸Si/SiGe

Quantum Link with Spin Shuttling

Gating using two distant spins

Electron shuttling

A.R. Mills et al., Nat. Commun. 2019

Belt-conveyor mode

I. Seidler et al., npj QuInfo. 2022

Spin Shuttling through QD Channels

Bucket brigate mode

Charge move across 9 QDs in ²⁸Si/SiGe A.R. Mills et al., Nat. Commun. 2019

Spin move in DQD in ²⁸Si-MOS Polarization F=99.97%; Coherence F=99.4% J. Yoneda et al., Nat. Commun. 2021

Conveyor-belt mode

4 sinusoidal voltages for driving a spin across 4 QDs (420 nm) in Si/SiGe Single electron shuttling with F=99.4%

I. Seidler et al., npj QuInfo. 2022

Spin shuttling across a 10 μ m long channel of 34 QDs (19 μ m) in Si/SiGe Single electron shuttling with F=99.7%

R. Xue et al., Nat. Commun. 2023

Quantum Link between Distant Qubits

A. Noiri et al. Nat. Commun. 2022

Shuttling Based CPHASE Gate in a Triple QD

A. Noiri et al. Nat. Commun. 2022

Limited by slow CPHASE

Summary

Basics of QC

: Superposition, entanglement and computation

Implementation of semiconductor qubits

: Spin qubits using concept of spin resonance Two-qubit operation using spin exchange coupling Readout and initialization Spin dynamics

Operation of spin qubits

: High-fidelity quantum gates Error correction

Challenges for semiconductor QC

- : Multi-qubit devices
 - 2D qubit arrays and quantum links for scale-up