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• Quantum light-matter interaction with natural atoms (Cavity QED) 

778 M.H. Devoret et al.: Circuit-QED: How strong can the coupling be?

a)

b)

Fig. 5 Two different schemes for coupling a Joseph-

son junction atom to a cavity resonator. (a) The junc-

tion is placed in the insulating gap of the transmission

line and couples to its electric field. (b) The junction

interrupts the central conductor of the resonator and is

coupled to its current.

Nevertheless, because of the one-dimensional nature of the cavity α enters only through its square root

rather than as α3/ 2 as in Eq. (38) and the condition ğ⊥Qcav for strong coupling to the cavity can therefore

be reached without going to extremely largeQcav . In practise, we have ğ⊥∼ 10− 2.

Coupling scheme (b) can be modeled by the circuit depicted on Fig. 5b. The Cooper pair box now

directly couples to the Q̂operator of the resonator and thus V̂ext = Q̂/Cj . Using Eqs. (54), (55) and (62),
the associated dimensionless constant is now given by
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We now find the even more favorable result that α enters with a negative power. Taking as an example the

realistic values Zc = 50Ωand ECP/2EJ = 100, we arrive at the dimensionless coupling ğ∥ ≃ 20. It is
therefore possible to reach the ultra-strong coupling regime of cavity-QED [7]. The passage from coupling

scheme (a) to coupling scheme (b) is a sort of duality transformation which interchanges the electric and

magnetic field. In coupling scheme (a) the transmon couples to the electric field of the resonator like in

usual cavity-QED experiment whereas in the “in-line” coupling scheme (b) the Josephson atom couples to

the current, or in other words, to the magnetic field of the resonator. To our knowledge the consequences

of this strong coupling have not yet been explored experimentally, although this junction-cavity in-line

configuration has been used in the weak coupling regime for the Cavity Bifurcation Amplifier [8]. One

immediate application of the strong coupling regime would be to make a simpler “in-line” transmon based

on a CPW.

7 Conclusion

We have discussed comparatively the coupling to an electromagnetic cavity of a circular Rydberg atom, on

one hand, and a Josephson junction atom, i.e. the Cooper pair box, on the other hand. It is possible with the

latter to turn the smallness of the fine structure constant into an advantage when it comes to reaching ultra-

strong coupling conditions. These conditions could be useful for making hybrid superconducting qubits

which would store quantum information mostly into high-Q superconducting resonating cavities.
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Figure1|Quantumcircuit andexperimental set-up.a,Optical imageof thesuperconductingλ/2coplanar waveguide resonator (light blue rectangle).

Black rectangles:areashown inb.Red rectangle:areashown ind.b,SEM imageof oneof thecouplingcapacitors.c,Sketchof thecurrent distribution of

thefirst three resonator modes.Their resonancefrequenciesare ! 1/2⇡ = 2.782GHz (λ/2,red), ! 2/2⇡ = 5.357GHz (λ,blue) and ! 3/2⇡ = 7.777GHz

(3λ/2,green).Thecavity modes ! naremeasuredat maximum qubit–cavity detuning(Φx= 0). Ingeneral, thefluxdependenceof ! n isvery weak,except

for the regionsclose toΦx= ±Φ0/2.d,SEM imageof thegalvanically coupledfluxqubit (see theMethodssection for fabrication details).Thewidth in the

overlap regionswith thecentreconductor is20 µm,and that of theconstriction is1µm.Orangerectangle:areashown ine.Green rectangle:areashown

in f.e,SEM imageof the largeJosephson junction. ItsJosephson inductanceLJ is responsible for approximately 85% of thequbit–resonator coupling.

f,OneJosephson junctionof thequbit loop.Theareaof this junction is14% of theoneshown ine.g,Schematicof themeasurement set-up.The

transmission through thecavity at ! rf ismeasuredusingavector network analyser (VNA).A secondmicrowavesignal at ! s isused for two-tonequbit

spectroscopy.The input signal isattenuatedat various temperaturestagesandcoupled into the resonator (light blue) through thecapacitorsC .The

crossedsquaresrepresent Josephson junctions.A circulator isolates thesample from theamplifier noise.

Here, σ̂x,z denote Pauli operators, gn is the coupling rate of the
qubit to thenth cavity modeand theflux dependence isencoded
in sin✓ = ∆ / h̄! q and cos✓. The operator σ̂x is conveniently
expressed asthesum of thequbit raising (σ̂+ ) and lowering (σ̂−)
operator. Thus, in contrast to the Jaynes–Cummingsmodel, the
Hamiltonian in equation (1) explicitly contains counter-rotating
termsof theform â †

n σ̂+ and ânσ̂−. Figure1gshowsaschematicof
our measurement set-up.Thequantumcircuit islocatedat thebase
temperature of 15mK in a dilution refrigerator. Wemeasure the
amplified resonator transmission usingavector network analyser.
For qubit spectroscopy measurements, the system isexcited with
a second microwave tone ! s with power Ps, while using the
3λ/2-modeat ! 3/2⇡ = 7.777GHzfor dispersivereadout9,26.

We first present measurements allowing the extraction of the
couplingconstantsof thequbit to thefirst threeresonator modes.
Thespectroscopy data in Fig.2ashow thedressed qubit transition
frequency1,26 with the expected hyperbolic flux dependence and
a minimum at δΦx = 0. Furthermore, the two lowest resonator
modes(! 1 and ! 2) arevisible. Inprinciple,afit totheHamiltonian
in equation (1) would yield all system parameters. However, our
measurement resolution does not allow us to reliably determine
the system parameters, in particular the undressed qubit energy

gap∆ and thecouplingconstantsgn in thissituation. Instead, we
extract them from a cavity transmission spectrum with negligible
photon population. For that purpose, wefirst measurethepower-
dependent a.c.-Zeeman shift of the qubit transition frequency
at δΦx = 0. The data are shown in the inset of Fig.2a. The
average photon number n̄3 can be estimated using the relation
Prf = n̄3h̄! 3 3 (refs6,8), where 3/2⇡ ⇡ 3.7MHz is the full-width
at half-maximumof thecavity resonanceandPrf istheprobepower
referred to the input of the resonator. Figure2b showsa colour-
coded transmission spectrum for the3λ/2-modeasa function of
δΦx. The data are recorded at an input power Prf ⇡ −140dBm
(greendatapoint inFig.2a,inset) correspondington̄3= 0.18.

We observe a spectrum with a large number of anticrossings
resulting from the multimode structure of our cavity system.
To extract the individual coupling constantsgn, we compute the
lowest nine transition frequencies of the Hamiltonian given in
equation (1) incorporating thefirst threeresonator modes. Fitting
the results to the spectrum of the 3λ/2-mode shows excellent
agreement with the measured data as shown in Fig.2c. We note
that the spectrum for the λ-mode shown in Fig.2d can be well
describedwithout additional fittingusingtheparametersextracted
from the 3λ/2-mode. For the qubit, we obtain 2Ip = 630nA
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AC stark shift of photon frequency

• Quantum light-matter interaction with superconducting qubit and microwave photons

• Major breakthrough in superconducting quantum computing architecture (Yale, 2004)

• Coherence time :  ~1ns (NEC, 1999) to ~0.1ms (IBM) 

Microwave 
photon

SC qubit

Qubit measurement using AC stark shift of microwave photons!

Circuit Quantum Electrodynamics



Cavity magnonics

Cavity QED with magnetic materials

- Quantum mechanical interaction between magnons, photons, and qubits

Tabuchi et al Science 2015 Xu et al PRL 2023



Magnons 

Spin Hamiltonian with a nearest-neighborhood Heisenberg interaction & 
Zeeman field

Holstein-Primakoff transformation (boson operators)

In the weak excitation limit, the spin Hamiltonian becomes coupled harmonic 
oscillators.



Magnons

Magnons: 

A collective excitation that spreads the flip of a single electron with angular 
momentum change hbar over the entire lattice

Diagonalized spin Hamiltonian in terms of magnons:

with a quadratic dispersion for  



Kittel mode

Kittel model: the fundamental mode of magnon (k=0)

We will mainly focus on the kittle mode magnon in today’s talk.



Cavity-magnon interaction

Zeeman interaction between the magnetic field of photon and spins

Laschance-Quirion et al Science 2015



Strong coupling : collective enhancement

Avoided crossings

Magnetic dipole coupling between the single spin and photon :  Weak ( < Hz)

Strong coupling is reached by collective enhancement 

Tabuchi et al PRL 2014



Quantum cavity magnonics

Non-linearity is necessary to probe non-classical states of magnons

Introduce the transmon!

Cavity-qubit interaction

Cavity-induced qubit-magnon interaction

Tabuchi et al Science 2015



Quantum control of single magnon

Xu et al PRL 2023

The non-linearity of the qubit can be used to control the magnon at a single quanta level!



Easy-axis in Ferromagnet 

Ferromagnetic exchange interaction Easy-axis anisotropy Zeeman term

• Exchange energy J is the largest energy scale : Ferromagnetic phase

• Due to the anisotropy, the magnetization is along easy-axis direction when H=0.

• Zeeman interaction due to the field, the magnetization tilt away from z-axis and 
toward y-axis



Easy-axis ferromagnet – Phase transition

• Mirror symmetry: 

• Weak-field limit : broken-symmetry

• Strong-field limit : symmetric phase 



Easy-axis ferromagnet – Critical squeezing

Q: What drives the mechanism of the  phase transition?

Magnon Hamiltonian: fluctuation around the magnetization

Magnon squeezing

Magnon Dispersion Degree of squeezing



Easy-axis ferromagnet – Critical squeezing

The softening of the magnon frequency is due to the diverging magnon squeezing!

Q: What drives the mechanism of the  phase transition?



Magnon squeezing as a resource

The two-photon process is an important toolbox for many quantum information 
processing. Eg: Cat-code for QC, quantum parametric amplifiers.

The anisotropy naturally gives the two magnon driving term

How can we leverage this in a cavity magnonic system?

arXiv:2310.13636

Typically, two-photon processes are dynamically generated using non-linear system or 
parametric driving.



Cavity magnonics with Easy-axis ferromagnet  

In the strong field limit, the magnetization will be aligned to the B-field direction.

Therefore, there is no displacement of the cavity due to the magnetization. 

(Normal phase)



Cavity magnonics with Easy-axis ferromagnet  

Normal phase effective Hamiltonian (for Kittel mode)

Bogoliubov transformation (squeezing transformation)

Enhanced coupling between due to the magnon squeezing 

Magnon squeezing



Enhanced cavity-magnon coupling strength

The magnon squeezing can be measured by the gap of the avoided crossings!

This avoided crossing is a smoking gun experiment showing the quantum nature of 
magnon due to squeezing.



Ultrastrong coupling and Superradiant PT

Tunable cavity-magnon strength by a static magnetic field can be increased arbitrarily 
large.

At a threshold value, the diverging magnon squeezing induces a superradiant phase 
transition breaking a mirror symmetry (Z2)

Since the magnetic dipole coupling drives the SPT, it is free of the A2-term that inhibits 
SPT.



Superradiant Phase Transition

Cavity superradiance Diverging photon numbers


