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What is Mesoscopic Quantum Transport

* Mesoscopic qguantum transport?

* Why ‘transport?’

— Transport reveals information of transported obj

— Imagine we are in a dark room!
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What is Mesoscopic Quantum Transport

* Mesoscopic guantum transport?

* Why ‘transport’: Transport reveals information of transported objects

* Which one is ‘guantum’: ptls are superposed, interfered, or entangled

- New phenomena with the same game setting?

= New quantum particle!

Quantum
fluctuations!

Quantum particles: ’ ;M
_ Q electrons, phonons, Cooper pairs, '%‘
o and other elementary excitations, = )
&7 ) which can be quantum mechanically
A== I\ superposed, interfered, or entangled!

Figures from depositphotos.com




What is Mesoscopic Quantum Transport

* Mesoscopic quantum transport?

* Why ‘transport’: Transport reveals information of transported objects

* Which one is ‘guantum’: ptls are superposed, interfered, or entangled

 What’s meso-scopic systems

Competition
b/t various
scales matter!

— Playground for quantum baseballs (not too large: macro-scopic)
but well-controllable & designable (not too small: micro-scopic)

We can place quantum
pitchers, catchers, fans
on the field, as we want!




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

Contact 1 Contact 2

V=_(u —uzle

E(k)4

\+//

> k PRL 62, 300 (1989)
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Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

e Calculating the current Opposite sign due to
opposite group velocity
2 2e

e
(zero temp.) It = 7M'ul & [~ = _TMHZ

E(k)1

»

251

Uz _
Current It carrying states ]
[ Current I~ carrying states

> k
Ak = 2niL




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

e Calculating the current

G of a perfect conductoj

2e 2¢e = integer multiple of
(zero temp.) I" = TMlil & I = —TM;LZ conductance quantum
__2e 2%y —pp  2e’
I=1t"+1"=—M(u, — ) = M = MV

h h e h

Contact 1 Contact 2

i
a
V= (u —u)/(—e)




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

 Quantized conductance
Contact resistance

2e?
G—hM—>R_ h 129
€ 2e2M M

* Where is the voltage drop? ¢ . .. issipation

Ans. at the contacts should occur to fit

into B.C. at infinity
? No matter\h\ow we define

M1*
., R the voltage drop, it

Contact 2 occurs at the contacts

Hot

i) Translational symmetry
is broken at contacts
No voltage drop ii) Contacts are irremovable

No
resistance

Contact 1




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

* Persistent Current & Scales How long the time

should be to be
‘persistent?’

v B
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",

M. Buttiker, Y. Imry, R. Landauer, Josephson behavior in small normal one-dimensional rings,
Phys. Lett. A. 96, 365 (1983)
Measuring elusive "persistent current" that flows forever, R&D Daily. October 12, (2009)



Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 . . Contact 2

* Scattering Matrix
[¢m) g = lim )

|pim)
> (62 1) = lim )

| )<

General solution H[y) = E[): |¢;) = A|pl) + BloP) & |¢) = C|dL) + D|pi).
Undergraduate courses, we deal with two cases: (i) left & (ii) right incidence. We know

(()B=rA&C =tA&D = 0: |p)) = Alp)) +TAld7) & |dyr) = tAlD))

() B=t'D&C=7'D&A=0: +]lg) = t'D|¢?) & |¢y) =7'D|pC) + D|pi).
General solution is

|91) = Algp]) + (PA + £'D)|¢P) & |y = (A + r'D) L) + D|epl).




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2

* Scattering Matrix

|o.™) >
[

|pin) |6/°) = lim |ypie)

X——00

> |62 |¢r°) = lim [pt)

General solution: |¢;) = A|p}) + (rA + t'D)|¢7) & |p,) = (LA +7'D)|d2) + D|pl).

()= 1)E)=56)

If interested only in amplitudes of scattering states at infinity, only thing we need to know is




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2
TR symmetry
is implied
Mu,T
Iy = —EM R
1= H1 MR
ZeM r
n Uz
Total current at lead 1:
Lo, Ze 2e 2e 2e
L =17 +1I7 = TMM —TMH1(1 —T) _TM.UZT = TM(M — u)T
Total current at lead 2:
Lo, Ze 2e 2e 2e
L=I+1I; = TMMT + TMIJz(l —T) — TM/"Z = TM(M — u)T




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2
TR symmetry
is implied
Mu,T

I = 2eM R
1= H1 MR

ZeM

n Uz

Total current at lead 1&2:
2e 2e? Uy — Hp\  2e?
I=1,=1,=—M — T=—MT( )=—MTV
1 2 n (Ii1 ﬂz) n o n

202 Perfect
G =—MT conductor
h T =1




Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, [ <<L, A, << W

Contact 1

*

*

*

hem

ical

Contact 2

potential

4

Exaggerated!
Single impurity will give T < 1

|

v



Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, [ <<L, A << W [Fuu of phonons]

Contact 1

Contact 2

Chemical potential

Voltage
Uniform electric field due to

View point of Drude model
series of resistivity dipoles

v

‘Electric field




Physics of MQT: Not perfect but ballistic conductor

* Back to the Ohm’slaw : [, L <<L, A << W

Contact 1 Contact 2

Ohm’s Law & Drude

model is derived

C— 2_€2MT (Lesson) Now we know

h when MQT becomes classical
from a microscopic view point

* Landauer formula for Ohmic regime

W G = 2e? kpW Ly . (ZeszLm) W & How limited Drude model is.
F — - o [
~ h m L h L Landauer formalism
0 _ 2ekp hkpT kFe t  ne’r gives another lesson:
T(N)~— 0 = = all you need to know for
L mTm T m m

transport is the S-matrix.

(as long as it is a single particle physics)



Physics of MQT: multi-terminal transport

* Buttiker formula: multi-terminal transport

I, = zfezq[Tqﬁp“p - Tpeq“q] = Zq[quVp - quVq]

T21 = T12 to have 262

c.f. two-terminal case I, = 0 for puy — #2} G = TT”}

2 2
I = f (To1t1 — Tioltz) = fT12(H1 —Uz) =GV

* Sumrule: ¥, G,, =Y,Gygtohave, =0forV, =1, =1}



Physics of MQT: multi-terminal transport

* Three-terminal case

2
I = f (To1pq + T34y — Tippp — Ti3li3)

S11 S12 S13
S=1S21 S22 S23




Physics of MQT: multi-terminal transport

* Three-terminal case

2
I = f (To1pq + T34y — Tippp — Ti3li3)

B,y S11 S12 S13\ (A1

B, =\|S21 S22 S23 || Ay

B S31 S32 S33/ \Aj3/.
out 1n

Ty1 = |521/7

I = Z_he (To1pq + T31tq — Taopty — Tizpts)
= Gq1 + G311 — Giafy — Gi3lis
= Go1 (V1 = V) + G31(Vy — V3)

I; = —I3; — I, (Kirchhoff’s Law)




Physics of MQT: finite voltage bias and temperature

* Beyond the linear response regime: Kubo’s formula is not enough
—> S-matrix, energy-dependent

—> Non-zero temperature

I =22 MT(uy — pz) = <2 MT J[fi(E) — f,(E)]dE

o 2—;2 j T (E)f(E) — fy(E)]dE

Thermoelectric transport
can be dealt
E E
A

-+
!1 + I:. ‘]| --+ IFI
i, — -4,

i S

= Uy

Energy channels

in a conductor

L fHE 1




Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

Resonant tunneling in MQT is universal in that
particular shapes V(x) or materials do not matter

Vi
A V(x) V(x) V(x)

E elkx qe ~tkx

—_— €

= a

-

pe—ikx beikx .reikx




Beyond coherent & metallic conductions

e More about Landauer-Biittiker formalism

—> MQT is quantal: DC current = (f), i.e., long-time average of current
— Current shot noise is also available [M. Biittiker, PRB 46, 12485 (1992)]

— Periodically driven quantum pumps can be dealt [M. Bittiker, (1990)]

* Beyond Landauer-Buttiker formalism: other methods for MQT

Landauer-Biittiker Intuitive & quick calculations. Cannot deal with many-
Finite voltage bias & temperature body physics
Kubo’s linear Relatively easy & quick, while Only allows physics around
response theory allowing many-body physics equilibrium states
Master equation AIIOW|.n.g many-!oody ph.ysms & Partlcula.rly use.ful at
Nonequilibrium bias & finite temp. tunneling regime
Keldysh formalism All the above Not so easy for everyone



Overview

* Recap. of the last lecture: Mesoscopic Quantum Transport (MQT)

— It has been exactly 1 year!

 MQT and low-energy theory w/ mesoscopic interactions

—> Low-energy effective theory by k- p-method

—

* k - p-method & Mesoscopic Interactions in action

— Spin-orbit, electric & magnetic field, superconductmg order

* MQT in action

dl . . .
—> v of topological systems calculating S-matrix

 What left beyond today’s lecture | Mesoscopic Quantum
Transport in 2 hours!




MQT: scales matter always

 MQT in condensed matter systems under interactions?

— Landauer-Bittiker formalism: S-matrix is the central quantity!

2e
=2 [TEARE - fEdE

=

AV

S-matrix?

Condensed matter’s]




MQT: scales matter always

 MQT in condensed matter systems under interactions?
— Current at (nearly) zero temp.
2o (HL S-matrix only around
I1=1(V) = 7] T(E)dE particular energies
UR
— Differential conductance at (nearly) zero temp.

dl _ I(v+dv)-I(V) _ 2e?
Energy 4 Yields selected.
quantum propagations
HR




MQT and low-energy theory w/ mesoscopic interactions

* Low-energy effective Hamiltonian

— In the case of graphene

d ! <Top view>
EZPV . ‘
ofes cpt.
=Y
o B2 »

EF - 12 electrons in unit cell




MQT and low-energy theory w/ mesoscopic interactions

= =

around this energy

* Low-energy effective Hamiltonian Eﬂduction occurs

— In the case of graphene

2D Dirac
Fermions




MQT and low-energy theory w/ mesoscopic interactions

Conduction occurs
around this energy

* Low-energy effective Hamiltonian

— In the case of graphene

I*E 0
" Reduced U P.\y v
degree of — S

freedom ‘
. around E;

Energy (eV)

-20 4

Mesoscopic Interaction
# interaction w/ bare electrons
N
[ V [
Mesoscopic Interaction
¢ breaks Inversion Symmetry

E-field




MQT and low-energy theory w/ mesoscopic interactions

* Low-energy effective Hamiltonian

—> In the case of WSe,, 2D Transition Metal Dichalcogenides (TMD)

W

e
5]
Cs || Ba
e
Fr || Ra

Transition Metal

2] ] 2 [
3 frass

71 7 73 74 75 ?6 T.r' ?B ?9 80
Lu Ta W Re Os Ir Pt Au
MI:

JOURNAL OF APPLIED PHYSICS 117, 084310 (2015)

chalcogenide

VBM 0 V/inm

;:-
%XX% g

VBM 1 V/inm

CBM 0 Vinm

™
Nl

CBM 1 V/inm

Energy/eV

P1ol-7
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k - p-method in action: formalism

* Low-energy effective Hamiltonian: k- p-method

—> How does a system looks around a particular momentum

Around large k
this looks '

—

Around small k
this looks

—

30
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k - p-method in action: formalism

* Low-energy effective Hamiltonian: k- p-method

—> How does a system looks around a particular momentum k
— There will be eigenstates ‘nlz) of the full Hamiltonian H

H (k) ‘nE) =E, (E) |nl_c>)
— Select subspace of the full Hilbert space with n’s such that

E, (l_é) is around Fermi energy. Let’s say those are n=1,2

—> Matrix representation of the low-energy Hamiltonian around E;

0 (5 = <<1E|ﬁ(7€ + T_7))|1E> <1E|ﬁ(; + 1_9))|2§>> {You can choose n’s as}
eff(P) =

<2’3|I7(7€) + 1_9>)|1I?> <21?|H(7<) + ;_5)|2,:> many as you want




—

k - p-method in action: formalism

* Low-energy effective Hamiltonian: k- p-method
. ((mlﬁ@ ) (wlack + ﬁ)IzIz})
(eilak + )] (2rlack +p)lex)
» Philosophy behind k - p-method

Sputp = ﬁeﬁ@:(mm(mha <§:ﬁik>|2k>> G 2
2k

<2E|H(7<))|1E>< Hk)|2k> o

> If pis small,

R - 1st order Perturbation
|n’ k+p)~ |n' k) (2nd order is often used)
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides

shown in Fig. 1(c). The group of the wave vector at the
band edges (K) is Cy, and the symmetry adapted basis
functions are

|
|d.) = ld2), |7) = ﬁild 2_p) +irld,), (1)
T= 1(—1) for K(K’)-valley  To first order in k. the

C5;, symmetry dictates that the two-band k& - p Hamiltonian
has the form

(2)

state splits. Approximating the SOC by the intra-atomic

contribution L - S, we find the total Hamiltonian given by
FIG. 1 (color online). (a) The unit cell of bulk 2H-MoS,,

which has the inversion center located in the middle plane. It A - —

Fon[aips two unit cells of MoS, monolayers, which lacks an H = ar{q-kx,ﬁ-x + k‘:ﬁ-v} 4+ ?&: — AT ~r} f: (3)
inversion center. (b) Top view of the MoS, monolayer. R, are the s - =

vectors connecting nearest Mo atoms. (¢) Schematic drawing of [MESOSCOPIC interaction

the band structure at the band edges located at the K points. where 2A is the spin splitting at the valence band top

caused by the SOC and 5. is the Pauli matrix for spin.
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides

shown in Fig. 1(c). The group of the wave vector at the
band edges (K) is Cy, and the symmetry adapted basis

(a) Electron doped system fl..] nctions are

l6.) = ld.2), |¢:>=é{|dz_,,;>+n—ldx,f)}. (1)

T = 1(—1) for K(K’)-valley  To first order in k. the
C5;, symmetry dictates that the two-band k& - p Hamiltonian
has the form

(c)

(2)

/o e e state splits. Approximating the SOC by the intra-atomic
= | vy contribution L - S, we find the total Hamiltonian given by

2a* A’ - A 5. — 1
O .(k)= —r a | A= at(rk .6, + k,6) + =6.- \rZ2——3] (3)
A7+ 42 AT ] R T
'Mesoscopic interaction| |

where 2A is the spin splitting at the valence band top
caused by the SOC and 5. is the Pauli matrix for spin.
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides
- PRL 108, 196802 (2012)

shown in Fig. 1(c). The group of the wave vector at the
band edges (K) is C;;, and the symmetry adapted basis
functions are

1
|b.) = ld2), |b7) J’Z’{Id —p) +irldy)), (1)
T = 1(—1) for K(K’)-valley To first order in k, the
C;, symmetry dictates that the two-band & - p Hamiltonian
has the form

M r K Hy = at(tk,o, + k,6,) + =6, (2)

"'\ ﬂ

2
TABLE 1. Fitting result from first-principles band structure
calculations. The monolayer is relaxed. The sizes of spin split-

ting 2A at valence-band edge were previously reported in the first

state splits. Approximating the SOC by the intra-atomic

principle studies [12]. The unit is A for @, and eV for 1, A, and A. contribution L - S, we find the total Hamiltonian given b}"
€2y (£15) is the Berry curvature in unit of Az, evaluated at — K
point for the spin-up (-down) conduction band. - A a. — 1

H = at(tk 6, + k,6,) + =6. — At— 5., (3)

a A t 2A Q, Q, s 2 F 2 -

MoS 3.193 1.66 1.10 0.15 0.88 8.26 . . -
wsf 1197 179 137 043 1551 957 where 2A is the spin splitting at the valence band top
MoSe; 3313 1.47 094 0.8 1023 7.96 caused by the SOC and 5. is the Pauli matrix for spin.

WSe, 3310 1.60 1.19 0.46 16.81 9.39
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides
— PRL 108, 196802 (2012)

shown in Fig. 1(c). The group of the wave vector at the

) \ band edges (K) is Cs, and the symmetry adapted basis
Countlng Sym metry functions are
e.g., Time-reversal symmetry

|
e S 160 = Mz)  16D) = slldeoy) + inld,). (D)
~ @A_,\lo-yK. [,I:IO'*@] B OA T = 1(—1) for K(K’)-valley To first order in k, the
@_1]—]8@ =0 (HT) 6. = H? C;, symmetry dictates that the two-band & - p Hamiltonian
y\''o y 0 .
~_1 .~ has the form
where 07" = —i0, K. A,
A A W R
0y at(—m:axax — layay) + > 0z| Oy - <
~ A A aa A A . ? 2 o O
= 0y at(itd, 6y — layay) + - 0,| 0y oW . A
2 - U o
. A " & K 4
= at(—it0,6, — i0,6y) — az + H;" ~ 8:
. 4
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides
— PRL 108, 196802 (2012)

shown in Fig. 1(c). The group of the wave vector at the

/ ) \ band edges (K) is Cs, and the symmetry adapted basis
Countlng Sym metry functions are
ime- 1
g'g"I”IT(“? D s - 160 - 5 ldeop) +irldy), (1)
a lO'y . I5INOLISO COFI;eCt, oS a.re T= 1(—1) for K(K’)-valley To first order in k, the
about orbitals. Hence, ® - K with C5;, symmetry dictates that the two-band & - p Hamiltonian
@2 — 1. See has the form
A ATY — -7
\ @l(:bv) — |¢v ) Hy = at(tk. &, + k,d,) + % ., (2)
ow, 2
PP AT
O~HE06 = |at(—itd, 6, — layay) + -0z 4 L=
] 0,0y — 1010 A’\ ". o e W
— o & t
— -t £ _JN
= H, O K 4
Time-reversal of low-energy H of O 8:

. K-valley is that of K’-valley
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides
— PRL 108, 196802 (2012)
\ band edges (K) is Cs, and the symmetry adapted basis

4 Counting Symmetry functions are
e.g., Time-reversal Symmetry

shown in Fig. 1(c). The group of the wave vector at the

|
.y =d2),  |b]) = —=(d2_p) + itld,), (1)

Now you see @ = i, K is correct V2

. y _ y ! T= 1(—1) for K(K’)-valley To first order in k, the
§’s are about spins. Check C5;, symmetry dictates that the two-band k - p Hamiltonian
e 6,-1 .1 . has the form

O~ H™0 =3, [Hg —ATZ—SZ] 8y

&, (2)

2| =

=057+, (-1 228, , Hoy = ar(rk,r, + kyd) +

_0-T_ (%271, _ pg-t _
= Hy A(=1) 2 SZ = state splits. Approximating the SOC by the intra-atomic
Time-reversal of Iow-energy H of contribution L - S, we find the total Hamiltonian given by

K-valley is that of K’-valley . A &, — 1
o - H = at(tk.6, + k,6,) + =6, — A\r——5,, (3)
‘“v s O' here 2A is the spin splitti t the val band t
‘o ' 6? WHNeEre = 15 € s5pin spliang a € valence ban op

Oh < caused by the SOC and 5. is the Pauli matrix for spin.
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k - p-method in action: Low-energy effective H

* Graphene: 2" order perturbation theory
— PRB 74, 165310 (2006); Mesoscopic interactions are

1
2(mec)?

[ is the lattice
site index

V= Hep+ Hop = (Vxﬁ)-§+eEzzi
i

— The 1t order perturbation in k- p-method vanishes

- The 2" degenerate state perturbation

© 71710 [y [ (@
2) _ (m VPNV ')
Hmn _ Z

(0) .
LeD EE - Ez E-field

—> Low-energy sector

— {lK’ pZA’ T>’ |K’ pZAI J’)’ |K’, pZA) T)I |K,) pzA; l))
|K,p,B, 1), |K,p,B,\),|K',p,B,T),|K',p,B, )
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k - p-method in action: Low-energy effective H

* Graphene: 2" order perturbation theory
— PRB 74, 165310 (2006); Mesoscopic interactions are

5o s 1 2 [ is the lattice
V= HSO +HEF _—Z(mec)z (pr) 'S+€Ezizi site index
— The 1t order perturbation in k- p-method vanishes
- The 2" degenerate state perturbation
(2) (MmO WOy n?)
Hmn — Zl D (0) .
¢ EE - Ez E-field

—> Low-energy sector

— {lK’ pZA’ T>’ |K’ pZAI J’)’ |K’, pZA) T)I |K,) pzA; l))}
|K,p.B, 1), |K,pB,\), IK',p,B, 1), |K', p,B, 1)

Back gate
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k - p-method in action: Low-energy effective H

* Graphene: 2" order perturbation theory
— PRB 74, 165310 (2006); Mesoscopic interactions are

1 S
L _wxp s+ n
Z(meC)z ( p) + e iZl

— The 2" degenerate state perturbation

[ is the lattice
site index

V=H50+HEF=

Hefs = —Aso + As00,T,S; + AR (O-xTzSy - O-sz)

- Dirac point at K(K’)-valley opens a gap E; = 2(A59 — Ag)

> 2250 =< (S';'G)Z £2 ~ 0.00114 meV ~ kj x 0.0132 K | E-field

E
9 AR — 3?5:(())')6 X E



k- p-method in action: Low-energy effective H

e Graphene as 2D Topological Insulator (TI)
—> PRL 95, 226801 (2005); Quantum Spin Hall Effect in Graphene
—> PRL 95, 146802 (2005); z2 Topological Order and the Quantum Spin Hall Effect

— Basically, 2D Tls realize
the effective H of graphene

Inside TI R NI ( )
insulating ggﬁjﬂ;& insulating
\N N4 dsp = kg X 0.0066 K
~ Ap = kg X 0.129 K

Energy

VAN /\ Ar/2so = 20

Wave vector Wave vector

Wave vector




What is Mesoscopic Quantum Transport

* Low-energy effective Hamiltonian: k- p-method
— 1D InAs Nanowire?

()

C

—> Nano Letters 16, 5

>

135 (2016)

€ ... 1 Selectlow-energy sector with
' [Pe =0, &Ip, = 0,1)

x(Ga)>0.2

| E,
n-InGaAs NWs iqﬁ
Eg
ks

(1)B
%& Hoof )=<<O,T|ﬁ(px)|O,T> <O,T|ﬁ(px)|0,l>)
P = (0.4 [A@ol0. 1) (0.4 [Apo]o, )



What is Mesoscopic Quantum Transport

* Low-energy effective Hamiltonian: k- p-method

— 1D InAs Nanowire? g/ Select low-energy sector with
. m=0Dein=0

H.(p,) = ((O'T |ﬁ(px)|O;T> (0,T |I:I\(px)|()’1,>>
b (O"L |H(px)|0; T) (0,l |I:I\(px)|()’ 1,)

* Mesoscopic Interaction # interaction w/ bare electrons

— Very high Landé g-factor, g = 14 (g = 2 for bare electrons)

-

Hy; = —fi-B =gugS-B
— Tunable Landé g-factor: PRB 72, 201307(R) (2005)
— Tunable Spin-orbit interaction: Nanoscale Adv. 4, 2642 (2022)



: : dl : :
MQT in action: e of topological system from S-matrix

* Reproducing journal papers: Quantum Transport in TSC
—> PRL 102, 216403 (2009), PRL 102, 216404 (2009), and PRL 103, 237001 (2009)

electrons Majorana
or holes fermions —
(T/opological Insulator Surface.”! \\
M4

dljav
edge mode vortex 104

oveey - eV

S, Sews 3 1

FIG. 3 (color online). dI/dV vs eV with i} =0.1. ¢V is in
units of 7hv,,/L and dI/dV is in units ofz—;'f. Solid (dashed) line
represents the case with even (odd) number of vortices in the
superconductor.
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* Quantum Transport in TSC

— Majorana zero modes (MZM) always come in pair

/(Opological Insulator Surface '] = \
M
t, O vortex
— 1
SE——- == 0 MZMs
NG -
dljav

FIG. 3 (color online). dI/dV vs eV with 7} =0.1. €V is in Quantization condition along BC
units of 7whv,,/L and dI/dV is in units of gff Solid (dashed) line .
kL + m+ n,m = 2mmn,

represents the case with even (odd) number of vortices in the

superconductor. where n,, is # of vortices.
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week ending
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edge mode vortex
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k- p-method, around k,, = 0
Mook A ~M, <0
T e ) I wen =05

3
& 0, y<0

Alx,y) = {Aew(x’y); y>0
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* Low-energy Hamiltonian H:(M-ww-a—EF A )
A* M-o—vgp-o+Eg)
H(p, = 0) 3)
—Mo, — ihvg0, 0 —ihvg0,0 Ae'®
= R YN [ [CO R o 0(y)
0, + lLNVp 0,0, Ae™ ¥ +lflvpay0y
—M —thay 0 0 0 —thay Ael® 0
3 hvg0,, M 0 0 hvgd,, 0 0 Ael?®
= 0 0 M hwpa, [P T e 0 —hvpo, |2
0 O _hvpay M 0 Ae_i(p hvpay 0
Zero-energy solutions
Region: y < 0 Region: y > 0
" [ 1 0\ ] %‘P 0
e .
oY —1 0 A 9
poyecem Al o TR L) yorwe ™ |c| O [4p| 7,
0 1/ | Ol.(p —e 2
e 2 0
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* Wave function matching at y=0

0 2
ip
i —e 2 0 1 0 e 2
e 2 0 0 1 _%4’ 0
detQ = 0 © There exists the topological zero-energy state.
lp

Lo

A=—-e2,B=—-e 2,=-1,D=1

Nk » O
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* Wave function matching at y=0 Q
( A \
. ip
. 0 e% (i)(p 0 1 0 —e2 Oi A
1 0 0 ez 0 10 _e7 |[ B
A +B( Y |=c +D NE .
0 1 0 _ip 0 _ig || ¢
0 1 i A 0 L AV
e 2 0 0 1 _lo
—e 2 0

detQ = 0 © There exists the topological zero-energy state.
ip ip

A=e2,B=e 2,0=1D=-1

If M = A, analytical expression is simple
Particle-hole symmetry is

ip expressed by the anticommutation HE = —EH of the

/ ez \ Hamiltonian with the operator

A 2 _ 0 ;.f,r,,(:)

-7yl - [
Y(y) xe T €z - (_fﬂ"}.c 0 (4)

_9
e 2
\e—%‘p) Try checking Zy(y) = ¥ (y): Majorana mode



: : dl : :
MQT in action: e of topological system from S-matrix

* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = f Y (H (py, —ihd, )Y (¥)dy < hvpp,

edge mode vortex

* Recall basis of the chiral Majorana mode

ip

A
Y(y) xe p | —e2 ,Where ¢ = @(r) and 7€ S

For @ — @ + 2m, Y(y) accumulates m-phase

e 2 e 2
ip io
—e 2
For o » ¢ + 2m, € = — i
e 2 e 2
ip ip
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* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = f Y (H (py, —ihd, )Y (¥)dy < hvpp,

edge mode vortex

* The quantization condition:

as Y(y) accumulates m-phase For ¢ = ¢ + 2m,

kL + ! + n,m = Zmﬂ: topological'j":
v 3D

— Berry phase
Below spinor rotates along boundary

ip
()
ip

A

_lo
e 2
e 2
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* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = f Y (H (py, —ihd, )Y (¥)dy < hvpp,

edge mode vortex

* The quantization condition:

kL +m+n,m =2mn

* Quantized Energies
Em = prkm

Thog
L

=(2m—-1-—n,

eV

FIG. 3 (color online). dI/dV vs eV with 1} =0.1. eV is in
unhs’ofiﬂhvm/Lland dI/dV is in units ofz—;E . Solid (dashed) line
represents the case with even (odd) number of vortices in the
superconductor.
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* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = f Y (H (py, —ihd, )Y (¥)dy < hvpp,

edge mode vortex

* The quantization condition:

kL +m+n,m =2mn

i 1 ologic msul
* Quantized Energies D topological 15112
Em = hvpkpy
Z
=(2m—1-n,) =X

L

FIG. 3 (color online). dI/dV vs eV with 7} =0.1. eV is in
unﬁs’ofiﬂhvm / Lland dI/dV is in units of -2—,“;: . Solid (dashed) line
represents the case with even (odd) number of vortices in the
superconductor.
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* Try: derive the low-energy Hamiltonian of below

using k- p-method (it should be chiral electron & hole modes)
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* Mesoscopic Quantum Transport in TSC using S-matrix

electrons Majorana electrons Majorana
or holes fermions or holes fermions

electrons Majorana
or holes fermions

2 eV
-zt f T(E)dE
h J

)
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* Symmetry of S, -matrix: particle-hole

) o

Particle-hole symmetry for the scattering matrix is ex-
pressed by

$u(e) = su(-o) ] o) 6)

- \qf{;}) = ¢pZ|pE) + P2 |p2) is an incoming state at energy E.
e, H|Wy) = E|¥y) with H(E|¥y)) = —EHE"Y(E|Py)) = —E(Z|¥y))

- E|Wy) is the energy eigenstate of —E and it’s an incoming state.

cf, E|Wy) = (ol og) + ok |dl)) = (61) 162) + (98)*|pl)

AT £ A U . (¢d)
. . givenincoming |  , | at E, incoming at —E' is known (68)"
a a
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* Symmetry of S, -matrix: particle-hole

) o

Particle-hole symmetry for the scattering matrix is ex-
pressed by

$u(e) = su(-o) ] o) 6)

- "Ifi’fl) = ¢pZ|pE) + P |p2) is an incoming state at energy E.

e, HWEY = E|WE) with A(Z|WE)) = —EAEZ-1(E|WE)) = —E(E|WE))

§|‘IJ§1) is the energy eigenstate of —E and it’s an incoming state.

cf, [PRE) = E(pelog) + k| ol)) = (o8) |98) + (9&)*| Py

AT £ A U . (¢d)
. . given incoming |  , | at E, incoming at —E' is known (68)"
a a
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* Symmetry of S, -matrix: particle-hole

) o

Particle-hole symmetry for the scattering matrix is ex-
pressed by

$u(e) = su(-o) ] o) 6)

- “ch) = 1/4,)6\1/),,,6) is an outgoing state.

EA'|‘P§’C) is the energy eigenstate of —E and it’s an incoming state.

c.f, |11Ub_,g> = é(lpb,c‘lpb,cn — 1/);,0 l/)b,c>

Vb
b

) at E, outgoing at —F is known (32)
C

.". given outgoing (
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* Symmetry of S, -matrix: particle-hole

%) (r,b") e

_ Sln t 5
(4 ¢! ©) Pa

Particle-hole symmetry for the scattering matrix is ex-
pressed by h
Pa

su(e) = 5| ) ©)

Sinle 5., (—& . o)

e h *
— given incoming (i ) at £, incoming at —E is known (Egb“) )

a )’

l/)b) at E, outgoing at —F is known lplj
Y e

vence, (2) = su-5) (08 ) < (92) = s (3 3)(%4)

— given outgoing (
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* Symmetry of S, -matrix: particle-hole

At small excitation energies |e| < |M,|, |A| the & depen-
dence of §;, may be neglected. (The excitation energy is
limited by the largest of voltage V and temperature 7.)
Then Eq. (6) together with unitarity (S, ' = ST) fully
determine the scattering matrix,

g 1N O 1 \(e* 0
A A

- Sin = Sij, ((1) (1)) and by using unitarity. The sign ambiguity & a is

undetermined but does not affect the conductance.
- Try!
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* Symmetry of S ,-matrix: time-reversal

The scattering matrix S,, for the conversion from
Majorana modes to electron and hole modes can be ob-

tained from §;, by time reversal, ¢§
| el 0 | - o | (
y — ‘-T — — . 1 £
Tl M) =S ( 0 eia )( [ Ii) ®) €
. : h
The phase shift ' may be different from «, because of the ¢ d

sign change of M upon time reversal, but it will also drop
out of the conductance.

e

— Just use time-reversal symmetry!
— Try it! (You've learned how to apply the time-reversal operator

to a low-energy Hamiltonian & S-matrix)

time-reversal

»
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electrons Majorana

o S _mat rix ] or holes fermions
" ()= 0" ) (52)
lpc out 0 el'Bc l'bc in

— Just picking up phases with scattering. But we know

EL
By —PB.=kL+m+n,m=—+n+n,m
hvp

* S-matrix o | o |
1 <e‘(“+“ )(elﬁb — ethe) e~i(a—a )(elﬁb 1 elﬁc)>

5= 2 pila—a’) (eiﬁ’b + eiﬁc) g~i(at+a’) (eiﬁb — eiﬁc)

The full scattering matrix S of the Mach-Zehnder inter-
ferometer in Fig. 1 is given by the matrix product

A St‘e Se‘h) — (EE:GF? 0 ) .
LS = (,She S.hh Lsﬂut 0 Eiﬁc *Slm (9}

where 8, and B, are the phase shifts accumulated by the
Majorana modes along edge b and c, respectively. The
relative phase

B, — B. = €éL/hv,, + m+ n, 7 (10)
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electrons Majorana

o S _mat rix ] or holes fermions
" ()= 0" ) (52)
lpc out 0 el'Bc l'bc in

— Just picking up phases with scattering. But we know

EL
By —PB.=kL+m+n,m=—+n+n,m
hvp

e S-matrix o | o |
G 1 (e‘(‘”“ )(el'gb — ethe) e~i(a-a )(elﬁb + elﬁc)>
2

ei(a_a’) (eiﬁb + eiﬁc) e_i(“‘l'a,) (eiﬁb — eiﬁc)

The full scattering matrix S of the Mach-Zehnder inter-
ferometer in Fig. 1 is given by the matrix product

A St‘e Se‘h) — (EE:GF? 0 ) .
LS = (,She S.hh Lsﬂut 0 Eiﬁc *Slm (9}

where 8, and B, are the phase shifts accumulated by the
Majorana modes along edge b and c, respectively. The
relative phase

B, — B. = €éL/hv,, + m+ n, 7 (10)
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* Quantum Transport using Landauer-Biittiker ( negligible energy }

5 dependence of T(E)

e (ML e
I=1(V) = Ef T(E)dE = —TV
KR

h

— Charge transmission into Superconductor
electrons Majorana Even Tlv Odd nv

or holes fermions
dV
. U le
- Thug

T=1—|Seel® +[Spel®* =1+ [Spel® = 1+ [Spel® = 2[Spel?

from unitarity, |S,e|? + [Spe|? = 1 2e2 n,mT
50y ===t ( 2 )

_|_

ar _ .
Finall S 2 == sm

nym eVL
h

Electrons are incident at E = eV
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* Physical pictures
Electrically Detected

Interferometry of Majorana

Fermionsin a Tl
PRL 102, 216404 (2009)

electrons Majorana
or holes fermions

Majorana Fermion Induced
Resonant Andreev Reflection

PRL 103, 237001 (2009)

a)
Electronlead ty
e — ‘l-.‘l‘e‘

e
Electronlead t

b)

Electmm
"“‘-i 2e
P ?
Hole lead ty




What left beyond today’s lecture

e More about Landauer-Biittiker formalism

—> MQT is quantal: DC current = (f), i.e., long-time average of current
— Current shot noise is also available [M. Biittiker, PRB 46, 12485 (1992)]

— Periodically driven quantum pumps can be dealt [M. Bittiker, (1990)]

* Beyond Landauer-Buttiker formalism: other methods for MQT

I Intuitive & quick calculations. I Cannot deal with many-

Landauer-Biittiker

Finite voltage bias & temperature body physics
Kubo’s linear Relatively easy & quick, while Only allows physics around
response theory allowing many-body physics equilibrium states
Master equation AIIOW|.n.g many-!oody ph.ysms & Partlcula.rly use.ful at
Nonequilibrium bias & finite temp. tunneling regime
Keldysh formalism All the above Not so easy for everyone



