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What is Mesoscopic Quantum Transport

* Mesoscopic quantum transport?

* Why ‘transport?’

— Transport reveals information of transported objects

— Imagine we are in a dark room!
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What is Mesoscopic Quantum Transport

* Mesoscopic guantum transport?

* Why ‘transport’: Transport reveals information of transported objects

* Which one is ‘guantum’: ptls are superposed, interfered, or entangled
—> New phenomena with the same game setting?

= New quantum particle!

_- Quantum
AR fluctuations!
g =" "
Quantum particles: Yy < M
@ electrons, phonons, Cooper pairs, y- "ha&
)N and other elementary excitations, - )

e \___:\.;_'_’./.i__,;;- which can be quantum mechanically
| Wi superposed, interfered, or entangled!

Figures from depositphotos.com




What is Mesoscopic Quantum Transport

* Mesoscopic quantum transport?

* Why ‘transport’: Transport reveals information of transported objects

* Which one is ‘guantum’: ptls are superposed, interfered, or entangled

 What’s meso-scopic systems

— Playground for quantum baseballs (not too large: macro-scopic)

Competition
b/t various

but well-controllable & designable (not too small: micro-scopic)
scales matter!

We can place quantum
pitchers, catchers, fans
on the field, as we want!




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

Contact 1 Contact 2

V=_(u —uzle

E(k)4

\+//




Physics of MQT: perfect conductor

e Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

¢ Calculating the current Opposite sign due to
) ) opposite group velocity
e

e
(zero temp.) It = 7Mﬂl & I~ = _71\/1#2

E(k)

251

m carrying states ]
[ Current I~ carrying states
Ak = 2niL= k

Uz




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

e Calculating the current

G of a perfect conductoj

2e 2¢e = integer multiple of
(zero temp.) I" = TM,Ul & I = —TMMZ conductance quantum
__2e 2%y —pp  2e’

h h e h

Contact 1 Contact 2

i
a
V= —u)/(—e)




Physics of MQT: perfect conductor

e Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

 Quantized conductance
Contact resistance

2e?
G—hM—>R_ h 129
€ 2e2M M

* Where is the voltage drop? ¢ ... gissipation

Ans. at the contacts should occur to fit
into B.C. at infinity

Hot i) Translational symmetry
is broken at contacts
No voltage dro Hi ii) Contacts are irremovable
N\
M2 —~ :
No matter how we define
the voltage drop, it

Contact 1 e

Contact 2 occurs at the contacts

resistance




Physics of MQT: perfect conductor

e Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

* Persistent Current & Scales How long the time

should be to be
‘persistent?’

v {B

M. Bittiker, Y. Imry, R. Landauer, Josephson behavior in small normal one-dimensional rings,
Phys. Lett. A. 96, 365 (1983)
Measuring elusive "persistent current" that flows forever, R&D Daily. October 12, (2009)



Physics of MQT: Not perfect but ballistic conductor

* Ballistic conductor w/ a single impurity: size of conductor, L ~ L

Contact 1 . . Contact 2

* Scattering Matrix
[¢m) o) = lim )

|pim)
> (62 1) = lim )

)<

General solution H[y) = E[): |¢;) = A|pl) + BloP) & |¢) = C|d2) + D|pi).
Undergraduate courses, we deal with two cases: (i) left & (ii) right incidence. We know
()B=rA&C=tA&D = 0: 90) = A|gi) +TAlD7) & ) = tAld))

() B=t'D&C=7'D&A=0: +]lg) = t'D|¢?) & |¢y) =7'D|p) + D|pi).
General solution is

|91) = Alpl) + (PA + £'D)|¢P) & |y = (A + r'D)|p2) + D|epl).




Physics of MQT: Not perfect but ballistic conductor

* Ballistic conductor w/ a single impurity: size of conductor, L ~ L

Contact 1 Contact 2

* Scattering Matrix

|P1") >
|p7t)<

|pin) |6/°) = lim |ypie)

X——00

> |02 |¢r°) = lim [pto)

General solution: |¢;) = A|p}) + (rA + t'D)|¢7) & |p,) = (LA +7'D)|d2) + D|pl).

(=G G =s()

If interested only in amplitudes of scattering states at infinity, only thing we need to know is

s=(; 1)




Physics of MQT: Not perfect but ballistic conductor

* Ballistic conductor w/ a single impurity: size of conductor, L ~ L

Contact 1 Contact 2
TR symmetry
is implied
Mu,T
I = —EM R
1= H1 MR
ZeM r
n 2%
Total current at lead 1:
Lo, Ze 2e 2e 2e
L =17 +1I7 = TMM —TMH1(1 —T) _TM.UZT = TM(IH — u)T
Total current at lead 2:
Lo, Ze 2e 2e 2e
L= +1I; = TM.UlT + TM.Uz(l —T) — TM.HZ = TM(IM — u)T




Physics of MQT: Not perfect but ballistic conductor

* Ballistic conductor w/ a single impurity: size of conductor, L ~ L

Contact 1 Contact 2
TR symmetry
is implied
Mu,T

Iy = 2eM R
1= H1 MR

ZeM r

n 2%,

Total current at lead 1&2:
2e 2e? Uy — o\ 2e?
I'=l =1 ="M — )T =TMT( - ) = ~—MTV

202 Perfect
G =——MT conductor
h 7 = il




Physics of MQT: Not perfect but ballistic conductor

e What is the electric field in the conductor?

Contact 1 . - . Contact 2
Chemical potentlal ’
s Gradient of chemical potential
— I cI;enegr:Ihng is generated by Neq. Bias

»
|

H1 = Uz M1 > Uy

T —— ey




Physics of MQT: Not perfect but ballistic conductor

e What is the electric field in the conductor?

Contact 1 . - . Contact 2

Chemical potentlal i .
. Gradient of chemical potential
— Screening is generated by Neq. Bias
2y = n(?)/e [ r length

»
|

Electron density Local charge imbalance
Res.istivitv & local electric field
g_ dipole (like pn-junction but by Bias)

—

»
»




Physics of MQT: No perfect & diffusive conductor

* Back tothe Ohm’slaw : [, L <<L, A << W

Contact 1

*

*

*

hem

ical

Contact 2

potential

4

Exaggerated!
Single impurity will give T < 1

|

v



Physics of MQT: No perfect & diffusive conductor

* Back tothe Ohm’slaw : [, L <<L, A << W [Full of phonons]
Hot

Contact 1

Contact 2

Chemical potential

[View point of Drude model

Voltage
Uniform electric field due to

series of resistivity dipoles

v

‘Electric field

v




Physics of MQT: Not perfect but ballistic conductor

* Backto the Ohm’slaw : [, L <<L, A << W

Contact 1 Contact 2

Ohm’s Law & Drude

model is derived

C— Z—eZMT (Lesson) Now we know

h when MQT becomes classical
from a microscopic view point

* Landauer formula for Ohmic regime

P G = 2e? kpW Ly . (Zezkam) W & How limited Drude model is.
F T - o .
~— h m L h L Landauer formalism
L __ 2e%kp hkpt kF et _ ne?t gives another lesson:
T(N)~—= 0= m T m  m all you need to know for
L transport is the S-matrix.

(as long as it is a single particle physics)



Physics of MQT: multi-terminal transport

 Bittiker formula: multi-terminal transport

I, = %ezq[Tm—p“p ~ Tpeq“q] = Zq[quVp ~ quVq]

T21 = T12 to have 232

C.f. tWO'terminaI case [1 = 0O for Uy — #2} G = Tle}

2 2
I = f (To1t1 — Tioltz) = fT12(M1 — Uz) = GV

* Sumrule: ¥, G,, =Y,Gygtohave, =0forV, =1, =1}



Physics of MQT: multi-terminal transport

* Three-terminal case
2
I = f (To1pq + T34y — Tippp — Ti3l3)

S11 S12 S13
S=1S21 S22 S23

S31  S32 S33

B, S11 S12 S13\ [ 4%
B, =|S21 S22 S23 || Ay
B; S31 S32 S33/ \As/.

out

T21 — |Sab|2,a&b=?




Physics of MQT: multi-terminal transport

* Three-terminal case

2
I = f (To1pq + T34y — Tippp — Ti3l3)

B, S11 S12 S13\ [ 4%
B, =|S21 S22 S23 || 4

S31 S3z S
B3/ . 31 S32 S33/ \As/.

Ty1 = |521/7

I = z_he (To1ptq + T31tq — Taopty — Ti3pts)
= Gq1 + G311 — Giafy — Gi3pis
= Go1 (V1 = V) + G31(Vy — V3)

I; = —I3; — I, (Kirchhoff’s Law)




Physics of MQT: finite voltage bias and temperature

* Beyond the linear response regime: Kubo’s formula is not enough
—> S-matrix, energy-dependent

—> Non-zero temperature

I =22 MT(uy — pz) = <2 MT JIfi(E) = f,(ED]dE

o 2—52 j T (E)f(E) — fy(E)]dE

Thermoelectric transport
can be dealt
E 4 E

+ +
Bo— | ']I — i
i, — -+ i,

1 S

= U

Energy channels

in a conductor

L fHE 1




Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
—> Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

Resonant tunneling in MQT is universal in that
particular shapes V(x) or materials do not matter

V(G
A Vix) - | Vi) - Vix)
E etkx a g—skx
—_— 5

—a a

LY

—ikx i ikx
pe be TE




Beyond coherent & metallic conductions

e More about Landauer-Biittiker formalism

—> MQT is quantal: DC current = (f), i.e., long-time average of current
— Current shot noise is also available [M. Biittiker, PRB 46, 12485 (1992)]

— Periodically driven quantum pumps can be dealt [M. Bittiker, (1990)]

* Beyond Landauer-Buttiker formalism: other methods for MQT

Landauer-Biittiker Intuitive & quick calculations. Cannot deal with many-
Finite voltage bias & temperature body physics
Kubo’s linear Relatively easy & quick, while Only allows physics around
response theory allowing many-body physics equilibrium states
PSR EeE AIIOW|.n.g rpany-F)ody physms & Partlcula.rly use.ful at
Nonequilibrium bias & finite temp. tunneling regime
Keldysh formalism All the above Not so easy for everyone



Overview

* Recap. of the last lecture: Mesoscopic Quantum Transport (MQT)

— It has been exactly 1 year!

 MQT and low-energy theory in condensed matter systems

— Low-energy effective theory by k- p-method

_ [Mesoscopic Quantum
* k - p-method & Mesoscopic Interactions Transport in 2 hours!

—> Mesoscopic Spin-orbit, Rashba, Zeeman interactions
* MQT in action

dl . . .
—> v of topological systems calculating S-matrix

 What left beyond today’s lecture




MQT: scales matter always

« MQT in condensed matter systems under interactions?

— Landauer-Bittiker formalism: S-matrix is the central quantity!

2e Condensed matter’s
1= 22 [T E) - fHE)dE S-matrix?




MQT: scales matter always

« MQT in condensed matter systems under interactions?

— Current at (nearly) zero temp

20 [hL S-matrix only around
I1=1(V) = 7] T(E)dE particular energies
UR

— Differential conductance at (nearly) zero temp.
al _ 1(V+dv)- I(V) 2e?

av av T(.UL)

Energ;l“ Yields selected
quantum propagations

ugp +ev =py

H=.




MQT and low-energy theory w/ mesoscopic interactions

* Limited energy window, so what?

— In the case of graphene

° ! <Top view>
2, :
o 0)co c&n
< T o 2s, 2p,, 2p, » 51 i’ . >
25 2p o zpz o ‘1 p “l
Z 'l\-_-ﬂ"/ "q_f"'/

12 electrons in unit cell




MQT and low-energy theory w/ mesoscopic interactions

. . ] Conduction occurs
* Limited energy window, so what? around this energy

— In the case of graphene

" 2D Dirac
1Fermions




MQT and low-energy theory w/ mesoscopic interactions

. . . Conduction occurs
* Limited energy window, so what? around this energy

. . =
— In the case of graphene = \ / E
0 4 N F L

i
- _""-;:_\:: —
= i i il

10 Mesoscopic Interaction
# interaction w/ bare electrons

" Reduced | B =
Mesoscopic Interaction

degree of
fregedom ‘ breaks Inversion Symmetry

E-field

C




MQT and low-energy theory w/ mesoscopic interactions

* Limited energy window, so what?

— In the case of graphene
H(k) is a 7 by 7 matrix

= 6 valence bands + 1 conduction band
(without considering spins)
X If we consider interactions w/ spins,

it’s doubled: 14 by 14 matrix = =

.

-------
___________________________
(T

H(k)isa2by2 matrix |

L
= 1 valence bands + 1 conduction band
(without considering spins)
X If we consider interactions w/ spins,
it’s doubled: 4 by 4 matrix

X K’-valley is a time-reversal partner
of K-valley

Emergy (cV)

Conduction occurs
around this energy

I IZD Dirac

Fermions

|
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— In the case of graphene

* Limited energy window, so what
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MQT and low-energy theory w/ mesoscopic interactions

* Limited energy window, so what?
—> In the case of WSe,, 2D Transition Metal Dichalcogenides (TMD)

Nature Materials 19, 861 (2020)

Sclence 344, 1489 (ZU14)



MQT and low-energy theory w/ mesoscopic interactions

* Limited energy window, so what?
—> In the case of WSe,, 2D Transition Metal Dichalcogenides (TMD)

VBM 0 V/inm CBM  %¥im
-
Xm - : ,.-1_ oy
Z gt P
# |
‘H'. -
chalcogenide
VEBM 1 Vinm CBM 1 Vinm
=3 4 7 = g | - .
Transition Metal -E O 1%
38 40 4 42 43 4? 49 50 51 54
EIMEMHIILﬂsn & :
2] ] e ) e 2 e o
i [ | 28 el o] g el e e ] 7] [B] .

Journal of Applied Physics 117, 084310 (2015)
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k - p-method in action: formalism

* Low-energy effective Hamiltonian: k- p-method

—> How does a system looks around a particular momentum

Around large k
this looks |

—

Around small k
this looks

—

35
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k - p-method in action: formalism

* Low-energy effective Hamiltonian: k- p-method

—> How does a system looks around a particular momentum k
- There will be eigenstates |nE) of the full Hamiltonian H

H (k) Ink) = E,,(k)|nk)
— Select subspace of the full Hilbert space with n’s such that

En(E) is around Fermi energy. Let’s say those are n=1,2

—> Matrix representation of the low-energy Hamiltonian around E;

many as you want

<1’;|ﬁ(_) + p)|1l?> <1E|ﬁ(_> + 1_9))|2§> {You can choose n’s as}
| |




—

k - p-method in action: formalism

* Low-energy effective Hamiltonian: k- p-method
i - (TG + B)E) (kA + B2y
erlack +p)hR) (2ilack + )24

» Philosophy behind k - $-method

- Putp =0 S| - ﬁ _
. <<1klﬂ<k>|1k> g ziH(k)Izk)) ()
k

| ~ = - —~ E K
. Cilack)lE) Gilacolr) 2"
= If pis small,
- > > 15t order Perturbation
|n, k + p) ~ |n, fe) (2"d order is often used)}

— Accordingly,

ﬁeﬁ(ﬁ)=<<1zlﬁ<k + Dl (iklac f+p)lzk>>
i 2 |
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides

monolayer
4 | ) = ld,z2) |
—
> ] e ] - S _——
9
S
=
g
g -4 |- -
&3] 0.
e . 1 '
A |5 = ﬁﬂdxz_yz) + lT|dxy ))
FIG. 1 {color online). (a) The unit cell of bulk 2H-MoSa, '8 | 1T I |
which has the inversion center located in the middle plane. &t M
contains two unit cells of MoS; monolayers, which lacks an r K r

inversion center. (b) Top view of the MoS; monolayer. R, are the
vectors connecting nearest Mo atoms. () Schematic drawing of

the band structure at the band edges located at the K points. Journal of Applled Physics 117’ 084310 (2015)
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k - p-method in action: Low-energy effective H

-

* 2D Transition Metal Dichalcogenides

shown in Fig. I(c). The group of the wave vector at the
band edges (K) is C3;, and the symmetry adapted basis
functions are

|
lb.) = ld2), |¢'D=ﬁ“dx1—f:’+led_r}-}}r (1)

T= 1(—1) for K(K’)-valley To first order im £, the
C5;, symmetry dictates that the two-band k& - p Hamiltonian

(c) e L= J has the form
= 2 . e W
‘? e dr H{J = HI{ {1,)

state splits. Approximating the SOC by the intra-atomic

contribution L - §, we find the total Hamiltonian given by
FIG. 1 {color online). (a) The unit cell of bulk 2H-MoSa,

which has the inversion center located in the middle plane. &t

contains two unit cells of MoS; monolayers, which lacks an ﬁ = at(tk. o, + k,6,) + E‘_’;}_ (3)
inversion center. (b) Top view of the MoS; monolayer. R, are the - — 2“1

vectors connecting nearest Mo atoms. () Schematic drawing of [MESOSCOPiC interaction]7

the band structure at the band edges located at the K points. where 2A is the spin splitting at the valence band top

caused by the SOC and 5. is the Pauli matrix for spin.
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides

shown in Fig. I(c). The group of the wave vector at the
band edges (K) is C3;, and the symmetry adapted basis

(a} Electron doped system tunCUﬂnﬁ are
FHL £

1 "
b)) =1d2), o] = Eildxz-_el' + itld,), (1)
T= 1(—1) for K(K’)-valley To first order im £, the

23 . s
1T~ i C5;, symmetry dictates that the two-band k& - p Hamiltonian
Vb, 7
¥ has the form
(c)
+ Hy = ai (2)
Ao e/ state splits. Approximating the SOC by the intra-atomic

contribution L - §, we find the total Hamiltonian given by

2a** A . A
—7 e A = at(rk,é, + k,6,) + =6 (3)
[AZ2 + 4422 k2P/2 D
'Mesoscopic interaction| |
where 2A is the spin splitting at the valence band top

caused by the SOC and 5. is the Pauli matrix for spin.
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides
— PRL 108, 196802 (2012)

shown in Fig. I(c). The group of the wave vector at the

band edges (K) is Cy;, and the symmetry adapted basis
functions are

Y = o (lda )+ ir
Id’:} = Id:-_l}r |¢’1r} o ﬁ“d_r—_r} + 17 Id_r}'}}r {l:'
T = 1(—1) for K(K’)-valley To first order in &, the

C;, symmetry dictates that the two-band & - p Hamiltonian
has the form

— - Graphene
Heff = Vep - 0
/ ‘*;"r_ state splits. Approximating the SOC by the intra-atomic
e < ["”— = contribution L - §, we find the total Hamiltonian given by
\, electrons,

- . A a. — 1
H = alltk, &, + k,6,) + 56, — Ar—=—35, (3)

where 2A is the spin splitting at the valence band top
%l caused by the SOC and 5. is the Pauli matrix for spin.
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides
— PRL 108, 196802 (2012)

shown in Fig. 1(¢). The group of the wave vector at the

& - 2 band edges (K) is Cy, and the symmetry adapted basis
Counting Symmetry functions are
ime- 1
e.g., IlmgAre\;erial fymm?etry 190 =1dsh 160 = —(lda-y) + irld) (1)
. @A—AlO'yK. [/I:IO'*@] a OA T = 1(—1) for K(K’)-valley To first order in &, the
@_1]—]8@ — 6-31 (Hg) 6-)1 — HO_T7 C;, symmetry dictates that the two-band & - p Hamiltonian
~_q A~ has the form
where 07" = —io, K. "
5, (ﬁg)*ﬁy _ Hy = at(tk,6, + k,6,) + 50 (2)
. N . WA
Gy [at(—w@xax — i0,6,) + EO'Z] by < -—
o A 1. v i K
= G, [at(lraxax —i0,6y) + EO'Z] Gy o - < e ‘h
AT vy U ot
= at(—ir@xﬁx — iayﬁy) — E(’)\'Z + Hy* O K At
v
< >t
- 4
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides

— PRL 108, 196802 (2012)

4 Counting Symmetry
e.g., Time-reversal symmetry
O = 10y, K is not so correct, 6’s are

about orbitals. Hence, ® ~ K with
@2 = 1. See
Oleg) = [, °).

N

Now,

071136 = [at(-i10.5, - i0,,) + 5.3,
0 x¥x yYy 2 z

: ~ o A~

= at(—i(—T)0x0x — i0y0y) + > 0z

= I/—I\O_T

Time-reversal of low-energy H of

< K-valley is that of K’-valley )

shown in Fig. 1(¢). The group of the wave vector at the
band edges (K) is Cy, and the symmetry adapted basis
functions are

B I
| = ld2), |b7) = NG
T = 1(—1) for K(K’)-valley To first order in &, the
C;, symmetry dictates that the two-band & - p Hamiltonian
has the form

(de2_p) + itld,)), (1)

~ A
Hy = at(tk, 6, + k,6,) + =0, (2)
w L= 2
o - < o W
s Y - -f;n t
K 4

£»

> 3

L8 2
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k - p-method in action: Low-energy effective H

* 2D Transition Metal Dichalcogenides
> PRL 108, 196802 (2012)
2 band edges (K) is Cy, and the symmetry adapted basis

4 Cou nting Sym metry functions are
e.g., Time-reversal symmetry

shown in Fig. 1(¢). The group of the wave vector at the

5 . lb.) =ld2),  |bl) = J—{Iﬂﬂ. —p2) titldy), (1)
Now you see @ = iS, K is correct ,
N y _ Y ! T = 1(—1) for K(K’)-valley To first order in &, the
§’s are about spins. Check C5;, symmetry dictates that the two-band k - p Hamiltonian
5-1070 = ¢ [ 6,-1 .1 . has the form
O~1H"6 = [Hg —ATUZ—SZ] 8y

A
=057 +3, ( o= Sz) 8 Hy = at(th, &, + k&) + 56, (2)

_ O-T _ 3(_\%2"1s _ -7
= Hy A(=1) 2 SZ =H" state splits. Approximating the SOC by the intra-atomic
Time-reversal of Iow-energy H of contribution L - S, we find the total Hamiltonian given by

K-valley is that of K’-valley . A G.— 1.
p—— = H = at(tk. o, + ko ]I+E|‘J‘: — A7 5 £. (3)
v - " <
oW & <P A where 2A is the spin splitting at the valence band top
>, - caused by the SOC and §. is the Pauli matrix for spin.

o 2 e: 'L
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k - p-method in action: Low-energy effective H

* Graphene: 2" order perturbation theory
— PRB 74, 165310 (2006); Mesoscopic interactions are

[ is the lattice
site index

V = Hyo + Her =5 )Z(VXp)S+eEZZl
e

— The 1t order perturbation in k- p-method vanishes

— The 2" degenerate perturbation

V(z) z (MmO 1OY 1Oy |n?)
MmN Lugp

—> Low-energy sector

_ {IK 04,1, 1K, p A L), K p,A, 1), [K', 0,4, l),}
|K) sz; T)) |K) sz; l)r |K,) sz) T)) |K’7 sz) l‘)

Back gate

— Applicable to 2D TMD: p,A - ¢. & K,p,B » ¢} & K',p,B » ¢,
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k - p-method in action: Low-energy effective H

* Graphene: 2" order pertuM

—> PRB 74, 165310 (2006); Mesoscopic interactions are

. ~ ~ [ is the lattice
V=HSO+HEF (pr) S+€Ezzl

site index

2( 2(mec)?
—> Mesoscopic Spin-orbit & Rashba interaction

Vet = —Aso + A500,T,S; + Ag (O-xTzSy — O-zsx)

- Dirac point at K(K’)-valley opens a gap E; = 2(A59 — Ag)

> 2450 =< (S';'G)Z £2 ~ 0.00114 meV ~ kj x 0.0132 K E-field

E
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k - p-method in action: Low-energy effective H

e Graphene as 2D Topological Insulator (TI)

—> PRL 95, 226801 (2005); Quantum Spin Hall Effect in Graphene
—> PRL 95, 146802 (2005); z2 Topological Order and the Quantum Spin Hall Effect

— Basically, 2D Tls realize

1
the effective H of graphene 5
< S 0
/ § 4 //
—= =
i g
Inside TI 5 NI
insulating ggg{fﬁ;& lngjgzz;m

Wave vector Wave vector

Wave vector

ASO =~ kB X 0.0066 K
Ap ~ kg X 0.129 K
Ar/Aso = 20




What is Mesoscopic Quantum Transport

* Low-energy effective Hamiltonian: k- p-method

— 1D InAs Nanowire?

Px >
Er
n-InGaAs NWs St IS $¢
ﬁlg Select low-energy sector with
Ipx =0,T) & |p, = 0,1)
f x(Ga)<0.2

(0,7 |H®[0,1) (0,7 [H(p:)|O, l))
(0,4 |[H®n|0,1) (0,1 |H(px)|0,4)

Heff(px) = (

x(Ga)>0.2 j




What is Mesoscopic Quantum Transport

* Low-energy effective Hamiltonian: k- p-method

— 1D InAs Nanowire? Select low-energy sector with
lIpx =0,T) & |[px = 0,1)

H.¢(p,) = ((O'T |ﬁ(px)|O;T> (0,T |I:I\(px)|()’ 1,))
b (O'l |ﬁ(px)|0; T) (0,l |I:I\(px)|(), 1,)

* Mesoscopic Zeeman Interaction # Bare Zeeman interaction

— Very high Landé g-factor, g = 14 (g = 2 for bare electrons)

-

Hy; = —fi-B =gugS-B
— Tunable Landé g-factor: PRB 72, 201307(R) (2005)
— Tunable Spin-orbit interaction: Nanoscale Adv. 4, 2642 (2022)



Overview

Mesoscopic Quantum
Transport in 2 hours!

* MQT in action

dl . . .
—> v of topological systems calculating S-matrix

 What left beyond today’s lecture




: : dl : :
MQT in action: - of topological system from S-matrix

* Reproducing journal papers: Quantum Transport in TSC
—> PRL 102, 216403 (2009), PRL 102, 216404 (2009), and PRL 103, 237001 (2009)

electrons Majorana
or holes fermions —
(ﬁpological Insulator Surface "] \\
M+

dijav Even ny, Odd n,
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l:i]gl: rnode viortex
08 3
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02 -

FIG. 3 (color online). dI/dV vs eV with i} = 0.1. ¢V is in
units of 7vhv,, /L and dI/dV is in units ofl—j:E . Solid (dashed) line
represents the case with even (odd) number of vortices in the
superconductor.




: : dl : :
MQT in action: - of topological system from S-matrix

* Quantum Transport in TSC

— Majorana zero modes (MZM) always come in pair

/( opological Insulator Surface L) —_ \\'
M
, t, O vortex
SE—— (52 0 MZMs
e J

FIG. 3 (color onlinc). dI/dV vs eV with 7 = 0.1. eV is in Quantization condition along BC
units of 7hv,, /L and dI/dV is in units osz‘: . Solid (dashed) line _
kL + m+ n,m = 2mmn,

represents the case with even (odd) number of vortices in the

superconductor. where n,, is # of vortices.




: : dl : :
MQT in action: - of topological system from S-matrix

week ending

PRL 102, 216404 (2009) PHYSICAL REVIEW LETTERS 20 MAY 2009

Electrically Detected Interferometry of Majorana Fermions in a Topological Insulator
A. R. Akhmerov, Johan Nilsson, and C. W.J. Beenakker

Instituut-Lorentz, Universiteit Leiden, PO. Box 9506, 2300 RA Leiden, The Netherlands
(Received 16 March 2009; published 28 May 2009)

» G

edge mode vortex

| : D t.opolagic'ﬂ_ﬁ
k - p-method, around k,, = 0
_(M-ao+tuvgp-o—E A —M, e
(LT g bs) WY wan =B

3
- 0, y<0

Alx,y) = {Aei(p(x’y); y>0



: : dl : :
MQT in action: - of topological system from S-matrix

* Low-energy Hamiltonian = :(M-w vep- o — Eg A )
A* M-o—vpp-o+Eg)
H(px = 0) (3)
—Mo, — ihvg0, 0 —ihvg0,0 Ae'®
= R N [ [CO R o 0(y)
0, + lLNVR 0,0, Ae™ ¥ +lflvpay0y
—M —pray 0O 0 0 —hvpay Ael® 0
3 hvg0,, M 0 0 hvgd,, 0 0 Ael?®
= 0 0 M hwpa, [P e 0 —hvpo, |0
0 O _hvpay M 0 Ae_i(p hvpay 0
Zero-energy solutions
Region: y < 0 Region: y > 0
y [ 1 0\ | %‘P 0
e .
oY —1 0 A 9
poyecem Al o TR L) yorwe ™ |c| O [4p| 7,
0 1/ | Ol.(p —e 2
e 2 0




: : dl : :
MQT in action: - of topological system from S-matrix

* Wave function matching at y=0 Q
A
ip 0 1 0 %0 0 \
1 0 ez ip 0 10 ip | (4
A _01 +B (1) =c| Y |+p| ¢%, |& 8 = 0 ez ?
0 1 i e ? 0 AL L AV
e 2 0 0 1 _ _% 0

detQ = 0 < There exists the topological zero-energy state.

lp _lg
A=—-e2,B=—-e 2,(=-1,D=1

Nk W




: : dl : :
MQT in action: - of topological system from S-matrix

* Wave function matching at y=0 Q
[ A \
. ip
1 0 es 0 0 10 —e2 0 \'/)
1 0 7 0 -1 0 7 |[ B
A +B =c| 9 |+p| €% |o - —e?2
0 1 0 iy 0 0 1 i || ¢
0 1 _ip —¢ 0 0 e 2/\p
e 2 0 0 1 _lo
—e 2 0

detQ = 0 < There exists the topological zero-energy state.
ip ip

A=e2,B=e 2,0=1D=-1

If M = A, analytical expression is simple
Particle-hole symmetry is

p expressed by the anticommutation HE = —ZH of the
/ ez Hamiltonian with the operator
_A|y| _e% — 0 io,C
Y(y) e MvF i = (_fffv{f 0 ) ®
e 2
\e—% Try checking Zy(y) = ¥ (y): Majorana mode



: : dl : :
MQT in action: - of topological system from S-matrix

* Low-energy Hamiltonian: chiral Majorana mode

Hege(Dy) = j WY (W H (py, —ihd, )Y (¥)dy < —hvgp,

edge mode vortex

* Recall basis of the chiral Majorana mode

ip
e 2
_A Lo
Yly) xe g —ei; ,Where ¢ = @(r) and 7€ S
e 2

_lo
e 2

For ¢ — @ + 2m, Y(y) accumulates m-phase

For @ » ¢ + 2m,



: : dl : :
MQT in action: - of topological system from S-matrix

* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = j WY (H (py, —ih0, )P (¥)dy < —Avy,py

* Recall basis of the chiral Majorana mode

i

A
Y(y) xe gl | —e2 ,Where ¢ = @(r) and 7€ S

For ¢ — @ + 2m, Y(y) accumulates m-phase

For @ » ¢ + 2m,



: : dl : :
MQT in action: - of topological system from S-matrix

* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = j WY (H (py, —ih0, )P (¥)dy < —Avy,py

edge mode vortex

* The quantization condition:

as Y(y) accumulates m-phase For ¢ = ¢ + 2m,

kL +m+n,m =2mn V3D vopolosial insulsor 5
v 3D

— Berry phase
Below spinor rotates along boundary

ip
[ <

L%

A
P e Tl €2

e 2
i
e 2




: : dl : :
MQT in action: - of topological system from S-matrix

* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = f WY (H (py, —ih0, )P (¥)dy < —Avy,py

edge mode vortex

* The quantization condition:
kL +m+n,m =2mn

* Quantized Energies
E, = hv,k,

dI/dv

Thug
L

=(2n—-1-—n,

eV

FIG. 3 (color online). dI/dV vs eV with i} = 0.1. eV is in
unhs’()fiwhvm/Lland dI/dV is in units 01"3—);‘:-E . Solid (dashed) line
represents the case with even (odd) number of vortices in the
superconductor.




: : dl : :
MQT in action: - of topological system from S-matrix

* Low-energy Hamiltonian: chiral Majorana mode

Hegt(Dy) = j WY (H (py, —ih0, )P (¥)dy < —Avy,py

edge mode vortex

* The quantization condition:
kL +m+n,m =2mn

'- e
D topological insulator L

* Quantized Energies
En = prkn

Thug
L

=(2n—-1-—n,

FIG. 3 (color online). dI/dV vs eV with i} = 0.1. eV is in
unhs’(ﬂiwhvm/Lland dI/dV is in units (:-1"3—).‘1’E . Solid (dashed) line
represents the case with even (odd) number of vortices in the
superconductor.

61




: : dl : :
MQT in action: - of topological system from S-matrix

* Try: derive the low-energy Hamiltonian of below

using k- p-method (it should be chiral electron & hole modes)

H(py = 0)

-M  —hvgd, 0 0 M —hvgd, 0 0
| nvpa, M 0 0 hvgd, — —M 0 0
= 0 0 M hvga, |00V 0 0 M —#wvgpo, |9

0 0 —hvgd, M 0 0 hvgd,  —M
Zero-energy solutions
Region: y < 0
y [ 1 0\ |
P(y) o« e | A _01 +B (1’
i 0 1/ ] X

Region: y > 0

0

M
o) e ™ |c| 1 +p (1)
1




: : dl : :
MQT in action: - of topological system from S-matrix

* Mesoscopic Quantum Transport in TSC using S-matrix

electrons Majorana electrons Majorana
or holes fermions or holes fermions

electrons Majorana
or holes fermions




: : dl : :
MQT in action: - of topological system from S-matrix

* Symmetry of S, -matrix: particle-hole

PRI

Particle-hole symmetry for the scattering matrix is ex-
pressed by

$u(e) = Sa=a)( ] o) ©®)

- \qf{;}) = ¢pZ|pE) + P2 |p2) is an incoming state at energy E.
e, HWy) = E|¥y) with H(Z|¥y)) = —EHEY(E|¥y)) = —E(Z|¥y))

- E|Wy) is the energy eigenstate of —E and it’s an incoming state.

cf, E|Wy) = E(p|og) + ok |dl)) = (61) 162) + (d8)*|dl)

AT £ A U . (¢d)
. . givenincoming | |, | at E, incoming at —E' is known (68)"
a a




: : dl : :
MQT in action: - of topological system from S-matrix

* Symmetry of S, -matrix: particle-hole

PRI

Particle-hole symmetry for the scattering matrix is ex-
pressed by

$u(e) = Sa=a)( ] o) ©®)

- "Ifi’fl) = ¢pZ2|pE) + P |p2) is an incoming state at energy E.

e, A|WEY = E|WE) with A(E|¥E)) = —SAE-1(5|¥E)) = —E(5|WE))

§|‘IJ§1) is the energy eigenstate of —E and it’s an incoming state.

cf, [PRE) = E(p|og) + ok ol)) = (o8) |98) + (9&)*| Py

ST £ A U . (¢d)
. . givenincoming | |, | at E, incoming at —E' is known (68)"
a a




: : dl : :
MQT in action: - of topological system from S-matrix

* Symmetry of S, -matrix: particle-hole

() = 5u() 2

Particle-hole symmetry for the scattering matrix is ex-
pressed by

$u(e) = Sa=a)( ] o) ©®)

- “ch) = 1/Jb,c‘1pb,c) is an outgoing state.

§|W,’ic) is the energy eigenstate of —E and it’s an incoming state.
—E\ _ ~ _ *
c.f, |qu,c> = 5(‘/)b,c‘1/)b,c)) = Yp ¢ 1Pb,c)

Vb
e

l/)Z)

) at £, outgoing at —F is known (1/)*
C

.". given outgoing (




: : dl : :
MQT in action: - of topological system from S-matrix

* Symmetry of S, -matrix: particle-hole

%) ( ba ) e
= 3 (5
(4 % ’ $a
Particle-hole symmetry for the scattering matrix is ex-
pressed by h
. Pa
$u(e) = Sa=a)( ] o) ©)

e h *
— given incoming (i ) at £, incoming at —E is known (Eqb“) )

a )’

lpb) at E, outgoing at —F is known (lpﬁ)
Pe Pe

Hence, (ilz) Sin(—E (&Zé;) (llic) Sin(= E)( 3) (ig)

—> given outgoing (




: : dl : :
MQT in action: - of topological system from S-matrix

* Symmetry of S, -matrix: particle-hole

At small excitation energies || < |M,|, |A| the & depen-
dence of §;, may be neglected. (The excitation energy is
limited by the largest of voltage V and temperature 7'.)
Then Eq. (6) together with unitarity (S, ' = S;‘n} fully
determine the scattering matrix,

__— | 1 el 0

- Sin = Si;, ((1) é) and by using unitarity. The sign ambiguity & a is

undetermined but does not affect the conductance.
- Try!




: : dl : :
MQT in action: - of topological system from S-matrix

e Symmetry of S_ .-matrix: time-reversal

The scattering matrix S,, for the conversion from
Majorana modes to electron and hole modes can be ob- e
tained from §;, by time reversal, ¢

-

- I (e 0 .
] = ST (— — -, P
‘slml(M} L"ln( M»:' \/i( 0 g i@ )( 1 f) {8)

h
The phase shift o’ may be different from «, because of the ¢ d
sign change of M upon time reversal, but it will also drop
out of the conductance.

out

+ I+

A A

e

— Just use time-reversal symmetry!
— Try it! (You've learned how to apply the time-reversal operator

to a low-energy Hamiltonian & S-matrix)

time-reversal

»




: : dl : :
MQT in action: - of topological system from S-matrix

clectrons Majorana

L S _mat rix ] or holes fermions
’ (o) o o) G2)
lpc out 0 el'Bc l'bc in

— Just picking up phases with scattering. But we know

EL
By —PB.=kL+m+n,mr=—+n+n,m
th

* S-matrix o | o |
1 <e‘(“+“ )(elﬁb — ethe) e~i(a—a )(elﬂb 1 elﬁc)>

5= 2 pila=a’) (eiﬁ’b + eiﬁc) g~i(at+a’) (eiﬂb — eiﬁc)

The full scattering matrix S of the Mach-Zehnder inter-
ferometer in Fig. | is given by the matrix product

o = [ Dee Seh)z ; (e"ﬁb 0 ) _
i (S}w Shh Sﬂm 0 EEBE Sm; (9)

where 8, and B_ are the phase shifts accumulated by the
Majorana modes along edge b and c, respectively. The
relative phase

B, — B. = £8L/hv,, + m + nyar (10)




: : dl : :
MQT in action: - of topological system from S-matrix

clectrons Majorana

L S _mat rix ] or holes fermions
’ (o) o o) G2)
lpc out 0 el'Bc l'bc in

— Just picking up phases with scattering. But we know

EL
By —PB.=kL+m+n,mr=—+n+n,m
th

e S-matrix o | o |
G 1 (e‘(‘”“ )(el'gb — ethe) e~i(a-a )(elﬁb + elﬁc)>
2

ei(a_a’) (eiﬁb + eiﬁc) e_i(“‘l'a,) (eiﬂb — eiﬁc)

The full scattering matrix S of the Mach-Zehnder inter-
ferometer in Fig. | is given by the matrix product

o = [ Dee Seh)z ; (e"ﬁb 0 ) _
i (S}w Shh Sﬂm 0 EEBE Sm; (9)

where 8, and B_ are the phase shifts accumulated by the
Majorana modes along edge b and c, respectively. The
relative phase

B, — B. = £8L/hv,, + m + nyar (10)




: : dl : :
MQT in action: - of topological system from S-matrix

* Quantum Transport using Landauer-Biittiker ( negijigible energy }

) dependence of T(E)
e (ML e
I=I(V)=—j T(E)dE = —TV
h u h
R
— Charge transmission into Superconductor
cloctrons  Majorana dl Evenn, Oddn,

dV j l-\'\ _."f. 3 %
3.4 b1 i \
£ 1 |

T=1—|Seel® +[Spel®* =1+ [Spel® = 1+ |Spel® = 2[Spel?
from unitarity, |S,e|? + [Spe|? = 1 2e?2 n, T
* ’ G(0) = —sinz( - )
- dl 2 : nym eVL L 2
Finally, i IShel Tsm ( T o

\
Electrons are incidentat E = eV



: : dl : :
MQT in action: - of topological system from S-matrix

* Physical pictures

Electrically Detected Majorana Fermion Induced
Interferometry of Majorana Resonant Andreev Reflection
Fermionsina Tl PRL 103, 237001 (2009)
PRL 102, 216404 (2009)
electrons Majorana a)

or holes fermions
Electronlead ty
e — ‘l{




What left beyond today’s lecture

e More about Landauer-Biittiker formalism

—> MQT is quantal: DC current = (f), i.e., long-time average of current
— Current shot noise is also available [M. Biittiker, PRB 46, 12485 (1992)]

— Periodically driven quantum pumps can be dealt [M. Bittiker, (1990)]

* Beyond Landauer-Buttiker formalism: other methods for MQT

I Intuitive & quick calculations. I Cannot deal with many-

Landauer-Biittiker

Finite voltage bias & temperature body physics
Kubo’s linear Relatively easy & quick, while Only allows physics around
response theory allowing many-body physics equilibrium states
PSR EeE AIIOW|.n.g rpany-F)ody physms & Partlcula.rly use.ful at
Nonequilibrium bias & finite temp. tunneling regime
Keldysh formalism All the above Not so easy for everyone



