DVCS and GPDs at Jefferson Lab

Hyon-Suk Jo Kyungpook National University

14th APCTP-BLTP JINR Joint Workshop

POSCO International Center, APCTP, Pohang - 2023.07.10

- Generalized parton distributions (GPDs)
- Deeply virtual Compton scattering (DVCS)
- DVCS at Jefferson Lab 6 GeV
- DVCS at Jefferson Lab 12 GeV
- Overview

Generalized parton distributions (GPDs)

In this model, valence quarks (high x) are at the heart of the nucleon and sea quarks (low x) extend to its periphery

Interpretation of GPDs : impact parameter b_{\perp} as a function of x

Transverse position b_{\perp} of the quarks u and d inside the nucleon for different values of longitudinal momentum fraction x

Deeply Virtual Compton Scattering (DVCS) and GPDs

DVCS is the key reaction to access the GPDs as it offers the simplest interpretation in terms of GPDs x longitudinal momentum fraction carried by the active quark.

 $\xi \sim \frac{x_B}{2-x_B}$ the longitudinal momentum transfer.

 $t = (p' - p)^2$ squared momentum transfer to the nucleon.

Deeply Virtual Compton Scattering (DVCS) and GPDs

DVCS is the key reaction to access the GPDs as it offers the simplest interpretation in terms of GPDs At leading-order QCD, leading twist, there are 4 chiral-even (parton helicity is conserved) GPDs for each parton

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicities
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference over parton helicities
nucleon helicity conserved	nucleon helicity changed	

Proton spin puzzle : The origin of the proton spin is still unknown

$$\frac{1}{2} = J^{q} + J^{g} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q} + L_{g}$$
Orbital angular momentum

GPDs H and E provide access to the total angular momentum of the partons in the nucleon

Ji's angular momentum sum rule:

$$\mathsf{J}^{\mathbf{q},\mathbf{g}} = \frac{1}{2} \int_{-1}^{1} x dx (\mathsf{H}^{\mathbf{q},\mathbf{g}}(x,\xi,t=0) + \mathsf{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t=0))$$

DVCS and Bethe-Heitler processes

BH fully calculable in QED

DVCS Bethe-Heitler GPDs σ**(eN→eNγ) =** DVCS and Bethe-Heitler (BH) experimentally undistinguishable interference between the 2 processes $T^{DVCS} \sim \int_{-\infty}^{+1} \frac{H(x,\xi,t)}{x\pm\xi+i\varepsilon} dx + \dots \sim P \int_{-\infty}^{+1} \frac{H(x,\xi,t)}{x\pm\xi} dx - i\pi H(\pm\xi,\xi,t) + \dots$ **Unpolarized Cross Section** $\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} \approx \left| T^{DVCS} + T^{BH} \right|^2 = \left| T^{DVCS} \right|^2 + \left| T^{BH} \right|^2 + I$ $\frac{d^{4} \vec{\sigma}}{dQ^{2} dx_{B} dt d\phi} - \frac{d^{4} \vec{\sigma}}{dQ^{2} dx_{B} dt d\phi} \propto \operatorname{Im}(T_{DVCS}) \times T_{BH}$ Beam-polarized Cross-Section difference

Compton Form Factors (CFFs) and DVCS observables

$$\begin{array}{l} \text{Compton} \\ \text{Form Factors} \\ \text{(CFFs)} \end{array} \begin{bmatrix} Re\mathcal{H}_q = e_q^2 P \int_0^{+1} \left(H^q(x,\xi,t) - H^q(-x,\xi,t) \right) \left[\frac{1}{\xi - x} + \frac{1}{\xi + x} \right] dx & \leftarrow \text{ Integrals of GPDs over } x \\ Im\mathcal{H}_q = \pi e_q^2 \left[H^q(\xi,\xi,t) - H^q(-\xi,\xi,t) \right] & \leftarrow \text{ GPDs at } x = \pm \xi \end{array}$$

Each DVCS observable is sensitive to a different combination of CFFs

 $\xi = x_{\rm B}/(2-x_{\rm B})$ k = t/4M²

Proton Neutron Polarized beam, unpolarized target: $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_{1}\mathcal{H} + \xi(F_{1}+F_{2})\widetilde{\mathcal{H}} - kF_{2}\mathcal{E} + ...\} \longrightarrow \lim \{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}, \mathcal{E}_{p}\}$ Unpolarized beam, longitudinal target: $\Delta \sigma_{UL} \sim \sin \phi \operatorname{Im} \{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) - \xi kF_{2}\widetilde{\mathcal{E}}\} \longrightarrow \lim \{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}\}$ Polarized beam, longitudinal target: $\Delta \sigma_{LL} \sim (A + B \cos \phi) \operatorname{Re} \{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) + ...\} \longrightarrow \frac{Re \{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}\}}{Re \{\mathcal{H}_{n}, \mathcal{E}_{n}\}}$ Unpolarized beam, transverse target: $\Delta \sigma_{UT} \sim \cos \phi \sin(\phi_{s} - \phi) \operatorname{Im} \{k(F_{2}\mathcal{H} - F_{1}\mathcal{E}) + ...\} \longrightarrow \lim \{\mathcal{H}_{n}\}$ The extraction of the quark GPDs which requires a quark-flavor separation of GPDs can be done through a combined analysis of DVCS observables for the proton and the neutron (deuterium target)

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{p}(\xi,\xi,t) - \big(H,E\big)_{n}(\xi,\xi,t) \Big] (H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{n}(\xi,\xi,t) - \big(H,E\big)_{p}(\xi,\xi,t) \Big]$$

Kinematic coverage of the different experiments

Jefferson Lab (Newport News, Virginia, USA)

CEBAF : Continuous Electron Beam Accelerator Facility

E00-110 experiment at Jefferson Lab 6 GeV in Hall A

DVCS experiment at Jefferson Lab 6 GeV in Hall B with CLAS

Jefferson Lab

E1-DVCS experiment in Hall B : binning for cross sections analysis

The cross section varies very quickly and is particularly sensitive to variations in $x_B \rightarrow$ very small bins in x_B

 $\begin{array}{c} \text{Extraction} \\ \text{of 4-fold} \\ \text{cross sections} \end{array} \quad \frac{d^{4}\sigma_{ep \rightarrow ep \gamma}}{dQ^{2}dx_{B}dtd\Phi} \quad \frac{1}{2} \left(\frac{d^{4}\vec{\sigma}_{ep \rightarrow ep \gamma}}{dQ^{2}dx_{B}dtd\Phi} - \frac{d^{4}\vec{\sigma}_{ep \rightarrow ep \gamma}}{dQ^{2}dx_{B}dtd\Phi} \right)$

Cross sections extracted for about **3000** (Q², x_B , t, ϕ) bins

DVCS unpolarized and beam-polarized cross sections from CLAS data

Interpretation of fit results obtained from the cross sections

DVCS on longitudinally polarized target from CLAS 6 GeV data

DVCS on longitudinally polarized target from CLAS 6 GeV data

Extraction of H_{Im} from the fits of Jefferson Lab 6 GeV data

- **G** Fit to CLAS σ and $\Delta \sigma$
- Fit to CLAS σ , $\Delta \sigma$, A_{UL} , A_{LL}
- Fit to Hall A σ and $\Delta \sigma$
- ★ VGG model

Fits in each (Q^2, x_B, t) bin of data

$$\mathsf{H}_{\mathsf{Im}}(\xi,t) = \mathsf{A}(\xi) e^{\mathsf{b}(\xi)t}$$

$$\xi \approx \frac{x_B}{2 - x_B}$$

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017)

From CFFs to proton tomography

Longitudinal momentum fraction x

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017)

Jefferson Lab upgrade to 12 GeV

Jefferson Lab 12 GeV and the CLAS12 detector

Jefferson Lab

Data taking with the new CLAS12 detector started in 2018

Projected results for CFFs with CLAS12

Typical DVCS event in CLAS12

- Electron: measured in the Forward Detector or in the Forward Calorimeter
- Photon: in the FT (or FD) calorimeter
- Proton: most often in the Central Detector

Proton DVCS A_{LU} with CLAS12

Beam spin asymmetry

$$A_{LU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

$$egin{aligned} \mathcal{A}_{LU} &= rac{1}{P} rac{\mathcal{N}^+(\phi_{\mathit{Trento}}) - \mathcal{N}^-(\phi_{\mathit{Trento}})}{\mathcal{N}^+(\phi_{\mathit{Trento}}) + \mathcal{N}^-(\phi_{\mathit{Trento}})} \end{aligned}$$

- P: electron polarization
- N⁺⁽⁻⁾: number of photon electroproduction candidates with beam helicity +(-)

G. Christiaens *et al.* (CLAS Collaboration) Phys. Rev. Lett. 130, 211902 (2023)

Preliminary neutron DVCS A_{LU} with CLAS12

DVCS experiments in Hall A and Hall C of Jefferson Lab

00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

XR

The analysis of the new Hall A data is underway

DVCS experiment in Hall C (2023-2024)

A new DVCS experiment will be carried in Hall C from 2023 to 2024

The new Neutral Particle Spectrometer (NPS) consisting of 1080 PbWO₄ crystals will be used to detect photons and π^0

HMS : High Momentum Spectrometer

The Electron-Ion Collider (EIC) at BNL

Brookhaven National Laboratory (BNL)

A high luminosity $(10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1})$ polarized electron proton/ion collider

The EIC luminosity will be a factor 100 to 1000 higher than at HERA.

Both electrons and protons / light nuclei will be highly polarized (70%).

Science Program: An EIC can uniquely address three profound questions about nucleons - neutrons and protons - and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of highdensity systems of gluons?

DVCS at the Electron-Ion Collider (EIC): gluons and sea quarks

- Collision of polarized electrons with polarized protons, light and heavy nuclei - High Luminosity : $L_{ep} \ge 10^{33-34} \text{ cm}^{-2} \text{ s}^{-1}$ (100-1000 times HERA)

Overview

- Jefferson Lab 6 GeV data were used to extract promising results, including a first experimental result of nucleon tomography.
- Jefferson Lab 12 GeV data are providing new high-precision measurements covering a large unexplored kinematic domain at high x.
- Many ongoing studies show benefits of a luminosity and energy upgrade at Jefferson Lab.
- While Jefferson Lab is a unique facility to study the valence quarks, the future Electron-Ion Collider (EIC) will provide high-precision GPD measurements at low *x*, allowing us to perform nucleon tomography of the gluons and sea quarks.

Thank you