Self-induced Berry flux and spontaneous out-of-equilibrium plasmonic ferromagnetism
November 17 (Tue), 2020
■ Main Page



    November 17(Tue.), 2020 / 16:00 - 17:00(KST)


    Recently Spontaneous symettry breakin lies at the heart of the description of interaciting phases of matter. Here we argue that a driven interacting system subject to a linearly polarized (achiral) driving field can spontaneously magnetize (acquire chirality(. In particular, we find when a metal is driven close to its plasmon resonance, it hosts strong internal acfiedls that enable Berryogenesis [1]: the spontaneous generation of a self-induced Bloch band Berry flux, which supports and is sustained by a circulating plasmonic motion, even for a linear polarized driving field. This non-equilibrium phase transition occurs above a critical driving amplitude, and depending on system parameters, can enter the spontaneously maanetized state in either a discontinuous or continuous fashion. Berryogenesis relies on nontrivial interband coherences for electronic states near the Fermi energy generated by ac fields eadily found in a wide variety of multiband systems. We anticipate that graphene devices, in particular, which can host high quality plasmons, provide a natural and easily available platform to achieve Berryogenesis and spontaneous non-equilibrium (plasmon-mediated) magnetization in present-day devices, e.g., those based on graphene plasmonics. If we have time, we will also discuss other manifestations of non-trivial quantum geometry.

    Invited Speaker
    Prof. Justin Song (Nanyang Technological University)

    ZOOM Webinar

    1) Please join with your email (no guest acc't) and write your full name & affiliation
        - E.g. Name: Full name(affiliation)
              Email: (No guest account)
    2) Join with the following link 
        - ID: 822 6321 7114
        Password: B0EUiP

    YouTube Stream
    1) Type "APCTP" in the YouTube Search bar
    2) Click the video with 'live now' sign

    Gil Young Cho (POSTECH)