Foundations of Statistical Mechanics
APCTP, December 1-2, 2015

Paul A. Pearce

School of Mathematics and Statistics

University of Melbourne

Abstract: This is the first part of a three part series of lectures presenting an introductory
Masters level course on Statistical Mechanics. Each part will consist of about 6 Lectures.
The first part introduces the classical ensembles of Gibbs with applications to the ideal gas.
Later parts will cover lattice spin models, scaling and universality in critical phenomena,
mean-field theory, renormalization group, random walks and percolation.
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Overview and References

Overview:

® T he goal of statistical mechanics is to describe the behaviour of bulk matter starting from
a physical description of the interactions between its microscopic constituents.

® This course introduces the Gibbs probability distributions of classical statistical mechanics,
the relations to thermodynamics and the modern theory of phase transitions and critical
phenomena. The microcanonical, canonical and grand canonical ensembles will be introduced
and illustrated with application to the ideal gas.

References:

® C.J. Thompson, Classical Equilibrium Statistical Mechanics, Oxford Science Publications
(1988).

® J. M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford, 1992.
® K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987.

® R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London,
1982.

® H.B. Callen, Thermodynamics, Wiley, New York, 1960.

® H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University
Press, 1971.

® C. Domb and M. S. Green/C. Domb and J. L. Lebowitz, Phase Transitions and Critical
Phenomena, Vols. 1-14, Academic Press, London, 1972—1994.
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Lecture Outline

Topic 1. Foundations of Statistical Mechanics
1. Thermodynamics versus statistical mechanics
2. Classical mechanics and phase space

3. Gibbs formulation of microcanonical ensemble

Topic 2. Canonical Ensemble

4. Maxwell-Boltzmann Distribution

5. Gibbs formulation of canonical ensemble
6. Ideal gas in canonical ensemble

Topic 3. Grand Canonical Ensemble

7. Gibbs formulation of grand canonical ensemble
8. Ideal gas in grand canonical ensemble

9. Equivalence of ensembles
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1: Statistical Mechanics Foundations

1. Thermodynamics versus statistical mechanics
2. Classical mechanics and phase space
3. Gibbs formulation of microcanonical ensemble

Josiah Willard Gibbs (1839-1903)

Photographs (© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)



Thermodynamics versus Statistical Mechanics

® T hermodynamics is an empirically based science. It describes many of the physical
properties of bulk matter (solids, liquids, gases) in terms of a few state variables such as
absolute temperature T (measured in Kelvin), internal energy U, pressure P, volume V and
magnetic field A and the relationships between them.

® Ultimately, of course, all of the macroscopic properties of matter (in equilibrium with its
surroundings) should be derivable from a knowledge of the fundamental interactions between
the constituent particles. This is the goal of statistical mechanics.

® The foundations of statistical mechanics were laid down by J.W. Gibbs in 1902. Statistical
Mechanics describes all of the macroscopic properties of matter (in equilibrium) starting from
a knowledge of the fundamental interactions between the constituent microscopic particles.
In particular, statistical mechanics provides a derivation of the relations of thermodynamics.

® The term statistical mechanics is a combination of mechanics and statistics. From a
mechanical viewpoint bulk matter, such as 22.4 liters of gas or 60 gram of iron at room
temperature (273K = 0°C,1K = 1°C) and pressure, typically consists of a system of N ~ Ny
particles where

N4 = 6.0225 x 10°  (Avogadro’s number)

1 mole = N4 atoms = # of atoms in 12 grams of the isotope carbon-12 (mass number = 12).
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T hermodynamics

In thermodynamics the following primitive concepts are introduced:

® System: Any macroscopic ensemble of a large number of constituent components, eg. a
gas of particles or a magnet composed of atoms with spin or elementary magnetic moments.

® State: The equilibrium state (which does not change in time) of a system is determined
by a set of state variables (measured experimentally), eg. {V,T} for a gas and {h,T} for a
magnet.

® State Functions: Quantities such as pressure of a gas P = P(V,T) and magnetization of a
magnet m = m(h,T) which depend only on the state of the system are called state functions.
The differentials of state variables are exact (their integrals are independent of the path).
The differentials of non-state functions such as §W (work) and 6Q (heat) are not exact.

® FEquation of State: A functional relation between the thermodynamic parameters of a
system, such as f(P,V,T) = 0 or f(m,h,T) = 0 is called an equation of state, eg. for the
ideal gas PV = nRT.

® T hermodynamic Potential: A function of state from which other relevant state functions
can be obtained directly or by differentiation is called a thermodynamic potential. For
example, the Helmholz free energy W is defined by

(T, V)=U(T,V)-TS(T,V)
where the internal energy U = U(T,V), entropy S = S(1,V) and pressure P = P(T,V) are

U:_TQE(W) G _ oV oW

oT 9T v
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Laws of Thermodynamics

First Law: Energy is conserved in infinitesimal thermodynamic processes, along a path in
the T-V plane, converting internal energy and mechanical work into heat

5Q = dU + §W = dU + PdV

where the changes in heat (6Q) and work (W) are not exact differentials (they depend on
path) but dU is an exact differential (it is independent of path). Although §Q and dW are
not exact differentials, the related differentials dV and dS are exact differentials

woo W g9
P T

Second Law: For irreversible changes of state in a thermally isolated system, the entropy
never decreases

AS = Stinal — Sinitial = /

v T

dS:/(S—on
Y

The equality holds for reversible processes.

Third Law: The entropy S of a perfect crystal (one which has no residual entropy)
approaches zero as T' — 0. Since it would require an infinite energy for cooling, absolute
zero (0 K) can never be reached so that physically

T > 0
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Phase Space and Equations of Motion

® The classical mechanics of a system of N particles with mass m is determined by writing
down an energy function or Hamiltonian describing the particle interactions and solving
(usually numerically) the resulting equations of motion in the 6 N-dimensional phase space

M= {o}) = {(P1,91,P2,92,-- ., PN, AN)})

spanned by the coordinates g; and momenta p; in 3-space. The 6 N-dimensional vector o € I
IS the microscopic state of the system.

® The Hamiltonian takes the form

N

2
H(o) = )_ ;Zn—l—V(ql,qQ,...,qN) = Kinetic 4+ Potential Energy
i=1

® The equations of motion are

H
p; = ot (= _V Force)
aq; 0q;
H :
q; = o (= Pi velocity)

These are equivalent to the Newtonian equations of motion
Fzzqu, ’I::].,Q,...,N

® It is not practical to solve this system for N = 6 x 1023 particles. Instead we need to
understand the average statistical behaviour of the mechanical motion of a large number of
particles.
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Statistical Averages

® Statistical mechanics is used to obtain average quantities or expected values for a large
system described, within a given ensemble, by a suitable probability distribution function.

Discrete Random Variable: Suppose a random variable x takes the values z1, x>, ..., xy With
probabilities p1,po,...,pn Where O < p;. < 1. The average or expected value of the observable
O(x) is then
n n n
> =1 O(z1)py,
(O(z)) =E[0(z)] = Y O(zp)p, = ==L , Y pp=1
k=1 k=1Pk k=1

Continuous Random Variable: Suppose that x is a continuous random variable on [a, b]
with the continuous probability density function p(x) where 0 < p(x) < 1. The average or
expected value of the observable O(x) is then

b
O(x)p(a)da
0()) = E0)] = | O(x)p(a)dz = ) : o [ a=1
‘ | p(@)da ‘

a

These averages are extended to higher dimensions by using multiple integrals and joint
probability distribution functions p(x).

Properties of (---):

1. Normalization: (1) =1

2. Linearity: (af(x) 4+ Bg(x)) = a{f(x)) + B{g(x)), a, B constants
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Indicator Functions

® Let £ C Q2 be a subset of 2 viewed as the universal set of all possible “events’ E C 2.
The indicator (or characteristic) function xg(x) is defined as

l, zek
0, ¢ F

xp(z) = {

In other words, the indicator function takes value 1 when E happens (is true) and O when it
does not happen (is false).

Example: Write down the indicator function for throwing an odd number on a single dice.

Solution: In this example 2 = {1,2,3,4,5,6} and E = {1,3,5}. The indicator function can
be written in terms of Kronecker deltas as

1, »=1,3,5

= 0,1+ 0,3+ 0,5 =
X(1,3,5}(2) = 62,1 + 023+ 9z 5 {o, r— 246

Exercise: Let z,y=1,2,3,4,5,6 be the random variables for the throw of two dice.

(i) Show that 2 is given by the Cartesian product {1,2,3,4,5,6} x {1,2,3,4,5,6}.

(ii) What is the average number rolled with two dice?

(iii) Find the average value of the observable O(z,y) = z2y? and show that (z2y?) = (z2)(y?).
(iv) Write down the indicator function X<4(x,y) for rolling less than or equal to 4 with two dice.

(v) Find the average of the observable O(z,y) = X<4(z,y) and show it equals Prob(z+y < 4).
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Ensembles

® In statistical mechanics, the averages, or ensembles used to the describe the system depend
on how the system is set up. There are three ensembles in general use. In each ensemble the
details of the connection with thermodynamics is different but each ensemble vields equivalent
results in the thermodynamic limit when N and V are taken to be infinitely large.

Ensemble Fixed Quantities
Microcanonical N E
Canonical N T
Grand Canonical 2 T

Here N is the total number of particles, E is the total energy and z is the fugacity.

® In the microcanonical ensemble the system is completely isolated so that the number of
particles N is fixed and the total energy E is conserved.

® In the canonical ensemble, the system is not isolated so the energy E is not conserved —
the system is in thermal equilibrium with its environment (a heat reservoir) at temperature
T. The number of particles N is fixed but the average energy is determined statistically by

the temperature T'.

® In the grand canonical ensemble the system is in equilibrium with a heat and particle
reservoir — neither the number of particles N or the energy E is fixed — the average
number of particles is controlled by the fugacity z and the average energy is controlled by

the temperature T'.
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Microcanonical Ensemble

® If the Hamiltonian (energy function) is autonomous, that is H = H({p;(¢),q;(t)}) does not
depend explicitly on t, then the system is conservative and the energy is conserved. In this
case, the mechanical motion takes place on the energy surface

H(oc) =T+4+V =FE (total energy) oel

® The Ergodic Postulate states that the invariant phase space probability density of an
isolated Hamiltonian system is the uniform distribution on this energy surface

§(H — E)
|- 8(H — E)dr

p(p,q) =

Here 6(x) is the Dirac delta function,

dlI" = dp1dqi1dpdq; . .. dpydqy

is a differential element of phase space and the 6 N —1 dimensional integral in the denominator
represents the total area of the energy surface.

® Although the postulate is almost certainly not generally true, we use it as a working
assumption as did Gibbs. As is the case for set theory and quantum mechanics, there is no
rigorous foundation to Statistical Mechanics!
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Justification of Statistical Mechanics

® Ultimately, the justification for statistical mechanics rests in agreement with experiments.
It is the averages of observable quantities O(p,q) that are measurable experimentally and
these are to be compared with the averages calculated in the microcanonical ensemble

O(p, q)6(H — E) dIr O(p, q) dI
o0y — Jpow st —myar [ 0@
/5(H—E)dr / dr
M H=F

® T he connection with thermodynamics in the microcanonical ensemble is due to Boltzmann
and relates the entropy S with the integral over the energy surface

1
S(U=E,V) = klogQ(FE), Q(F) = T dlr = area of the energy surface

where k is Boltzmann’s constant

k = 1.3805 x 1023 Joules/Kelvin

For a discrete system Q(FE) is the counting of allowed microstates.

® The entropy is a thermodynamic potential. Other thermodynamic quantities are derived

by differentiation
1
o2 p=r(X)
T OF /v oV /) E

® Although, the microcanonical ensemble is introduced first for theoretical reasons, it is the
canonical and grand canonical ensembles that are used in practical calculations.
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Ideal Gas in Microcanonical Ensemble

® The ideal gas consists of N non-intereacting idealized point particles of mass m. This
provides a good approximation to a realistic gas at high temperatures and |low pressures. It is
not a good approximation at low temperatures and high pressures where the gas can undergo
a phase transition to a liquid or solid.

® In the microcanonical ensemble, the ideal gas is defined by the Hamiltonian

R A
H(U):%Zpi
1=1

There is only kinetic energy and no potential energy V = 0.

® Since H(o) is time-independent, conservation of energy implies that
1 N

H = — pr — FE = total energy = constant
2m 1

® The motion of the state o € ' in phase space is confined to the hypersphere in 3N — 1
dimensional momentum space

2 2 2 2 2 2
Plg T Ply TP, T+ PNy T PNy T PN, = 2mE

® In the problem sheets, it is shown that this ideal gas is described by the ideal gas equation

PV = NEKT, k = Boltzmann's constant
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2: Canonical Ensemble

4. Gibbs formulation of canonical ensemble
5. Ideal gas in canonical ensemble
6. Maxwell-Boltzmann distribution

James Clerk Maxwell (1831—-1879) Ludwig Eduard Boltzmann (1844—1906)

Photographs (© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)



Canonical Ensemble

® The canonical ensemble describes a system of N particles in a box of volume V weakly
coupled to and in thermal equilibrium with an infinitely large heat reservoir at absolute
temperature 7'. The number of particles in the system is fixed but heat is exchanged with
the environment to maintain a temperature T

® The fundamental postulate is that the probability density p(o) of points in phase space I
IS given by

exp(—BH (o))

p(oc) = : oecl
/r exp(—BH () dr

Here H(o) is the Hamiltonian of the system (excluding interactions with the heat reservoir),
the integral is over all of the accessible phase space and

1
B = — = inverse temperature
kT

where Boltzmann's constant is

k = 1.3805 x 1023 Joules/Kelvin

® The weight exp(—8H (o)) is the Boltzmann factor associated with the configuration o.
Crudely speaking, it gives the unnormalized a priori probability of finding the system in the
state o.
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Boltzmann Weights

® The probability density p(o)dlr gives the statistical probability of finding the system in the
phase space volume dI" about o. In accord with the interpretation of p(o) as a probability

Jr O(o) exp(=BH (o)) dl
Jrexp(=BH (o)) dl

(o) >0, /rp<a>dr=1, (0(c)) /o<a>p<a>dr—

® The normalization factor is a fundamental quantity called the canonical partition function

ZN:/I_exp(—BH(a))dl_

® Notice also that at high temperatures (T — oo, 3 — 0)

1
p(o) ~ o dr

and all states are equally likely (random) while at low temperatures (T' — 0,3 — oo) the low
energy (ground) states are most probable.

® Note that energies are additive whereas Boltzmann weights are multiplicative. If E7 and
E» are the energies of two independent (non-interacting) subsystems then the total energy is

E=FE;+ Eo

While, if W7 = e PE1 and Wy = e P#E2 are the Boltzmann weights of these two independent
(non-interacting) subsystems, then the Boltzmann weight of the combined system is

W = e BE — .—B(E1+E2) — W1 Wo
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Maxwell-Boltzmann Distribution

® A heuristic argument gives the Gibbs postulate
in the case of a toy model with N distinguishable
particles distributed randomly, that is with equal
probability, among a number of discrete energy
levels E;, with 7=1,2,3,... and n; particles in
each level. The probability of a given distribution
{n1,n5,n3,...} satisfies

N1

nilnolng!. ..

P

® In the limit N — oo, n;j — 00 Stirling’s formula

NN
N!N(—> , etc.

€
gives

Energy Levels

Es o—o0—o—0o0—0—@

E; o—e

E3 o—e—eo—o—o

£, o—e—e

Ei o—o—o—o—o—0—o

J

logP ~ NlogN — N — > (njlogn; —n;)

ns

n4

n3s

n2

ni

® To find the most probable configuration, we maximize log P subject to the two constraints

> n;j=N, Y n,;E; = E = total energy
J J
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Lagrange Multipliers

® \We treat n; as continuous variables (properly we should use the continuous densities
pj = nj/N), introduce Lagrange multipliers «, 8 and maximize

NIlogN — N — Z(nj Iogfn,j —TL]) — aZn] — 52”’]E]
J J J
Differentiating with respect to n; gives

logn; +a+BE; =0 or n;= e e PE;

® T herefore
N=) nj= e_aZe_BEJ —e “Zy
and J J

pj = v - = density of states

gives the probability of finding the particle j in the energy state E;. This distribution is the
Maxwell-Boltzmann distribution. The constant 3 is identified as the inverse temperature.

® The total energy FE is controlled statistically by the inverse temperature g = 1/kT

E _ LymE  YEe P 1 |
N Xiny e PE \Bj) = N%:<EJ>
This implies E = E(B8) and B = B(F) since E'(B) = —<(Ej — <Ej>)2> < 0 for more than

one energy level E;. So E(f) is strictly monotone decreasing and E(T') is strictly monotone
increasing as is sensible physically. So /3—1 = kT is a measure of the average energy.
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Connection with Thermodynamics

® The canonical partition function Zp is a generating function for the thermodynamic
functions. The (Helmholtz) free energy W = W(T,V) = U — TS is given by the Gibbs
postulate

VW = —kTlog Zy

where U = U(T,V) is the internal energy, S = S(7T,V) is the entropy and V is the volume.

® The internal energy is

U U
U:—TQQ(—) :\U—Ta—:\ll—l—TS
ol \'T oT
Hence the entropy is
oWwV
S = -
oT

® Similarly, the specific heat (at constant volume) is

2
_ou_ 9%V

Cvr—=_" —_T72 —
V= T 912
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Maxwell Relations

® Consider an irreversible infinitesimal transformation along a curve in the V-T plane. The
free energy is

v = W(\WV,T) =U-TS
Using the first law dU = 6Q — W, the exact differential along this curve is

dV = dU —TdS — SdT' = 6Q — oW —TdS — SdT' = TdS — PdV —TdS — SdT

W W
— _PdV — SdT = a—dV—l—a—dT = VV . (dV,dT)
oV oT

® It follows that the pressure P = P(V,T) and entropy S = S(V,T) are given by

A oV
~ v ~ T
where we have the Maxwell relation
oP 39S 0%V
T ~— 8V~ ovoT
and
VW = —(P(V,T),S(V,T)), V= (i, i)
oV’ oT

is a two-dimensional irrotational (conservative) vector field so that the integrals in the (V,T)-
plane are path independent.

® Equating the functions multiplying the differentials is only valid because dW is an exact
differential. Note that changes in heat and work, dQQ and dW, are not exact differentials.
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Ensemble Averages

® The average or expected value of an observable A = A(o) is given by the ensemble or
thermal average

- /I_ A(o) exp(—BH (o)) dI

A
o | exp(=pH(a))dr

® For example, the internal energy is

- /I_ H(o) exp(—BH(0)) dr

U = (H)
/I_exp(—BH(a))dl’
— —(%Iog/rexp(—ﬁH(a))dl_ = —%Iog ZN
1
() ) -

as given on a previous slide.
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Philosophy

® Although there is in general no rigorous derivation of the Gibbs ensembles and
their connection with thermodynamics, the fundamental postulates are well confirmed in
applications.

® Physicists adopt the attitude that the postulates are almost certainly correct and use them
without question as the starting point for their calculations.

® Paradoxically, at the same time, mathematicians regard the whole edifice of statistical
mechanics (not to mention set theory, quantum mechanics, etc.) as being based on shaky
foundations! In any case let’'s not dwell further on the foundations of statistical mechanics.
Instead, let's take the Gibbs prescription as given and pragmatically concentrate on practical
applications.
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Ideal Gas

® The ideal gas is a system of noninteracting ./
point particles of mass m. In the canonical \ \V/
ensemble, we consider a system of N particles

in a container of volume V and maintained at a
temperature 1T' by a surrounding heat reservoir. 1 o—"

® T[T he Hamiltonian is :
N .2

p.

H = ¢

z; 2m

and the canonical partition function is

Z—1/ | day...day [ - [ d dex(5%2>
N = N1 Jv e SRR S\ B . HP1- - APN ©XP > p;

m,—1

® The N! appears here because the N particles are regarded as indistinguishable, that is,
configurations obtained by permuting the particles are considered to be identical (Boltzmann
counting). This is not strictly correct. A proper treatment uses quantum mechanics applied
to a system of Bosons or Fermions.

® Notice that we also ignore relativity which dictates that |v| <¢, that is, |p;| < mc where c
IS the speed of light.
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Ideal Gas Law

® Using the formula for the Gaussian integral

©.@)
/ exp(—Az?) dz = \/f
—00 A

the partition function of the ideal gas is evaluated as

2= lLee ()] = (5

sO the pressure is given by

oU 9 NEkT
P=_-""= LT 10g Zn) = 0
oV av( 9ZN) v

® The ideal gas law is thus

PV = NET = nRT

where n is the number of moles of gas (N =nNy4) and

R = N4k = 8.315 Joules/Kelvin

IS the ideal gas constant.
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Equipartition of Energy

® The internal (average kinetic) energy of the ideal gas (V = 0) is

0 3N 1
U = (H) = (kinetic ener = —logZny = — = 3N(5kT
(H) = ( ay) 95 9Zn 25 (5kT)
This illustrates the equipartition of energy between the 3N (participating) degrees of freedom.
Each (participating) degree of freedom contributes an energy of %kT. It also shows that the

temperature T is indeed a measure of the average internal energy.

® Since the above arguments rely on Gaussian integrals, the participating degrees of freedom
are always harmonic oscillators. Usually these are momenta components but they can include
rotational degrees of freedom (for molecules for example) or spatial degrees of freedom for
(trapped) particles confined by a harmonic (quadratic) potential

N
V=> Aq2
j=1

® Notice that, in the canonical ensemble, the internal energy is extensive (grows linearly with
the system size N as N — oo). Similarly, P, W and S are extensive while T and V are intensive
quantities (independent of the system size).
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Kinetic Theory of Gases

® Derive the Maxwell-Boltzmann velocity distribution of kinetic theory for an ideal gas

d 3/2
an = 47TN( m ) v2e
dv 2wkl

where the differential dn is the number of molecules with speed between v and v + dv.

. 2
mu /QkT) 0 = |’U|

® Since the particles do not interact, the Boltzmann factors factorize

ST exp( g: 51732) H exp( 5P3>

Particles are independent and identically distributed W|th joint probability distribution function

(o)) = ] »(@) )= <
p({p;H) = I ppy), o) =
! j=1 ! /IR{3 e_ﬁpz/dep

2m

where dp = dpx dpy dp. is a differential element of momentum phase space volume.

® The velocity distribution of each particle is the same. Using the one-particle distribution
function p(p) gives the number of particles in the differential phase space volume dp as

dn (p) ds o—BDp?/2m dp o—mV? /2kT g, v2e—m? /2T g,
— — p — — — 0
N /RS e—ﬁp2/2mdp /R3 e—mv2/2de,U /O U2€—mfu2/2de,U
= 47‘(‘( m )3/2v26_mv2/2kT dv
2wkT

where we use p = mv and dv = 4mv?dv to integrate over spherical shells.
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Microcanonical Ideal Gas

® In the microcanonical ensemble the connection with thermodynamics is given by

Q(E

S(E,V) = const 4+ klog =

where N is the fixed number of particles in a container of volume V and

Q(F) = /H_E dlI = {Area of energy surface H = E}

(a) Identifying the internal energy with the total energy U = E and regarding the entropy
S = S(FE,V) as a function of £ and V, use the first and second laws of thermodynamics

in the form 50
where @ is heat, W is work, 6@ is an inexact differential and dS is an exact differential to
show that
P =T (f?éi) : LE.::: (fzéi)
oV /) E T OF /v
® From the chain rule we have
oS 0S 1 P
dS = —dE+ —dV = —dFE + —dV
OF oV T T
Since dS is an exact differential, we can equate the coefficients
os 1 oS P
OE T’ ov. T

This is the definition of the temperature T' in the microcanonical ensemble!
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Gamma Function

(b) The Gamma function is defined by

©.@)
M(2) :/0 t#~le=t gt

Use integration by parts to show that N'(z+1) = 2z (z) and hence find '(n) and N'(n+1/2)
forn=0,1,2,...

® Integration by parts gives

©.@) o
MNz+1) = /O et dt = —[tze_t}go + Z/O t#letdt = 2 M (2)

So, setting =z = y2, gives

(1) = /Oooe_xda: = —[e_m];o =1, [(1/2) = /Oooaj_l/ze_mda: = 2/0006_y2 dy = /7

Hence, by recursion,

rn)=mn-1)"n-2)(n-3)---(3)(2)r1) = (n-1)!

and

I_(n_l_%) — (n_ %) (n— %)(%)r(%) — (2n2—n1)!! -



Surface Area of Hypersphere

(c) Show that the ‘“surface area” and volume of a hypersphere of radius r in n dimensions
are given respectively by

2n/2 pn—1 T 2pn X . ¢
An(r) = SO Vi(r) = FET D r(z+1)_/o 7=t gt

Hence show that the volume and surface area of a unit hypersphere go to zero as n — oo.
Hint: consider the integral

/OO / —(371"‘372"‘ +27) dridzy...dxn
oo _

and evaluate it by integrating over spherical shells using spherical coordinates.

® From dimensional analysis
An(r) = apr™t

Now consider evaluating the following multiple integral using spherical shells of volume
An(r)dr and then setting r2 = ¢

a2 = (/OO e " da:) / / o— (@5 a5+ +a3) drides . . . dxn
— OO
= /O An(r)e_r dr = /O Pl gy = %an/O 137 e gt = %ozn (n/2)
Hence
>n/2 o2xn/2 n—1
an = ———, An(r) =
M(n/2) M(n/2)




Volume of Hypersphere

® Similarly, integrating by spherical shells, we see that

n  Tm/2)n  T(E4+1)

o an T’ Dr/2 pn /2 pn
an, / =1 gy n

Vn(r) = /OrAn(r)dr =

From the convergence of the exponential

eng — <0 = im — =0
n! n—00 nl
n=0

we see that N'(n+ 1) = n! grows much faster than z™ for any fixed x. It therefore follows
that

im An(r) = Jim Vn(r) =0

which is not at all an intuitively obvious result.

® A ball of unit radius has the maximum surface area in 7 dimensions!

® A ball of unit radius has the maximum volume in 5 dimensions!



Ideal Gas Law and Equipartition of Energy

(d) Use parts (a) and (c) to show that for large N

3
PV = NEKT, E=§NkT
® For an ideal gas, the energy surface is given by an n = 3N dimensional hypersphere
N p3 al 2 2 1/2
H=3Yon=0 L 3 Pa=rh r=0mD)Y
j:]. ]:]_Oé—x,y,z

with surface area QQ(E) and entropy S(E,V)
27T3N/2(2mE)(3N_1)/2

QE=/ dF:/d---/d iNp = vN
(E) H=E 1% 4 1% 2y H=E P r(B3N/2)
QE
S(E,V) = const + klog ]E”
where de = dpq...dpy. The pressure is therefore
NEkT
P=T(8—S> :NkTilogV:_
OV /E oV 1%
Similarly,
1 0S 0 3N — 1)k
—=(—> =%(3N—1)k—logE:( )
T OFE /v oOF 2F

Neglecting 1 compared to N, for large N, gives the equipartition of energy

E=§NkT
2



3: Grand Canonical Ensemble

7. Gibbs formulation of grand canonical ensemble
8. Ideal gas in grand canonical ensemble
9. Equivalence of ensembles

Satyendra Nath Bose (1894—1974) Enrico Fermi (1901—-1954)
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Grand Canonical Ensemble

® In some circumstances, it is not sensible to work with a system of a fixed number of
particles. Rather, the system should be in equilibrium with a particle reservoir and the
number of particles should be controlled by a chemical potential i, or equivalently, an activity
(fugacity)

® For such cases the grand partition function = is defined by

oo
=(V,T,z) = Y 2NzZy(V,T)
N=0

Mathematically, this is the generating function for the canonical partition functions Zy.

® In the grand canonical ensemble the pressure is defined by

kT

The number of particles fluctuates and is not fixed. The average number of particles is

(©. @)

S NN Zy i )
N N=0 = g= = z— log=
W) - N o(Bu) 0z

N=0
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® Similarly, the internal energy U and the free energy W are given by

i A He PHgr
U = —ilogE:(Iﬂ:Ni? ]
B Z zN/e_BHdI_
N=0 a
Vv = (N)kTlogz— kT log=

It is not easy to derive this last formula for the free energy and we will not need it in this
course.

® In the grand canonical ensemble W, S and V are extensive while P, T' and z are intensive.

® In the grand canonical ensemble, the expectation value of an observable A = A(o; N) is

@)

> ZN/I_A(O';N)G_BHC“_
(4) = 7=

@)

Z ZN/I_G_BHC“_

N=0



Grand Canonical Ideal Gas

® For the ideal gas

v N (27T?7’L>3N/2
ZnN =

N'\ B
(27rm>3/2]
2V | ——
B

Hence

© @)
= Y 2NzZy=exp

N=0
® It follows that 3/2
— 2mTm
PV = KkTlog= = kTzV <7>
3/2
0 2
(N) = z—log= = 2V =T
0z B

Eliminating z between these equations gives the ideal gas law in the form

PV = (N)kT

® The internal energy U of the ideal gas in the grand canonical ensemble is

oo @) 0@
A rHe_BHdF N 2N (H)ean Zy S NN Zy
U = (H) = 833 = % = KT = 3(N) 3kT
Z AV | e BHGr Z zNZN Z zNZN
N=o0 ‘T =0 =0
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Equivalence of Canonical and Grand Canonical Ensembles

® The canonical and grand canonical ensembles are clearly not equivalent for finite systems
since N and (N) do not coincide. However, for very large V, the fluctuations of N about
its average (N) in the grand canonical ensemble are usually very small as is shown in the

Problem Sheets:

(N —(N))?)
(N)?

(V)

= o((N))

o(V)

(N),V — oo, 7—);0 = density

® More specifically, N exhibits a sharply peaked
Gaussian distribution which approaches a Dirac
delta function at (N) as V — ~c.

® [t follows that the canonical and grand
canonical ensembles vield identical results in the
limit V — oo

P = kpT
As we will see later, to describe the

thermodynamic behaviour of bulk systems it
IS necessary to take the thermodynamic limit

)
V — 00, (N)— oo, = —p

o(V)

o(V)
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Derivation of Canonical from Microcanonical Ensemble

® The microcanonical formalism applies to an isolated system with a fixed total energy Er.
In the canonical ensemble, the system H is in thermal equilibrium with an infinitely large heat
reservoir Hpr. Since heat energy can be transferred the system is not isolated. To create an
isolated system we consider the heat reservoir as part of the total system

Hr=H+ Hp = FE + Erp = Ep = const, T = Total, R = Reservoir

We assume that the interactions that maintain thermal equilibrium between the system and
the reservoir are infinitesimally small so that they can be neglected.

® Assume that the reservoir is an ideal gas of particles with mass m in a box of volume V

where we will take Np — oo.

® T he microcanonical distribution is

6(H+ Hg — E7)
Q(ET)

where dI", dl g, dI 7 = dI' dI p are phase-space elements for H, Hr and Hp respectively and

Q(E7) is the area of the energy surface Hp = H + Hr = E7.

pTdrdrR: dFdFR
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Canonical Probability Distribution

® T he canonical probability distribution p for H is

odll = (/pTdI_R>dI_

Now dI'p = Qr(ERr)dER where Qp(ER) is the area of the energy surface Hp = Ep for the

reservoir. So, since Ep = const,

P = 4 (ZT) [ 6CH + Hp ~ Br)QR(ER)dER
Qp(Er—H) _ Qr(Er— H) Qp(Er) _ S— Qr(Er — H)
Q(ET) Qr(Er) QUET) Qr(ET)

® If R is an ideal gas in a box of volume V

N N Np—1 N
Qp(ER) = /qul'”/vquR /Z].VR p2.=2mERd Rp =V RCNRT3 R = VRO
= J

1=1

/
Ngr

E§23NR—1) /2

where the constant Cp, = 2x3%/2/(3n/2), [(z) is the Gamma function and we have evaluated

the volume of a hypersphere with radius r = /2mFEpgr in 3Ni dimensions.
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Limit of Infinitely Large Reservoir Np — oo

® From above and using the Euler Iimit limp—oo (1 — %)n — e ¥ gives

Qp(Ep — H H \ (3Ng—1)/2
p o lim r(ET ) = lim (1 — —) = exp(—BH), since Ep «< Np
Np—00 QR(ET) Np—0o0 Er
where
3N 3N
B = lim 2 — = since E < oo
Np—oo 2B Np—oo 2Ep

® The total energy Ep ~ Ep (as Ny — oo) is a measure of the temperature of the system.
Since the reservoir is an ideal gas, the above result is just the equipartition theorem

U = Er ~ Er ~ 3Ng(3kT), Np — oo
We therefore identify 8 as the inverse temperature
1
P =T

® After normalization, we finally obtain the Gibbs canonical distribution

_ exp(—pBH)
P = Texp(—BH)dI

® The ideal gas is a classical approximation. In quantum mechanics, particles are either
bosons or fermions. The differences between ideal, bose and fermi gases only matter at low
temperatures and high pressures.
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Summary of Ensembles

Microcanonical (N, E fixed)
§(H — E)
S(H — E)dr

p(p,q) =
J

r

- [o@asH-Bydar [ Opq)dr
P, q = = —

/I_ 5(H — E)drr /H:E dr

S(E,V) = klog (% /H:E dr)

1_os  ,_,08
T OF oV

Canonical (N, T fixed)
_ exp(—BH(0))
p(O’) - 9
/r exp(—BH (o)) dr

Iy = /rexp(—/m(a))dr

- /r O(o) exp(—BH (o)) dr
/I_exp(—BH(a))dl_

(O)
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W(N,V,T) = —kTlogZy =U — TS

o /W oW
H=—T2—(—):\U—T—=\U TS
(H) OT \ T oT T
oW oU 02 W oW
S pm— — T, C = — == — — P _—
oT V= ar T2 oV

Grand Canonical (z,T fixed)

O
=(V,\T,z) = Y. 2"2Zy
N=0

@)

> zN/I_O(N,a)e_BHdI_

(0) = =5
ZZN/e_BHdI_
N=0 I
kT 0 0
P=""log=(V,T N) = 2— log =, U=—— log=
V Og (7 72)7 < > Zaz g 86 g



Simple Harmonic Oscillator

® The Hamiltonian of the simple harmonic oscillator is

H =%+ ¢%), p,q €R

(a) Calculate the averages (p?), (¢g?) in the microcanonical ensemble.

(b) Calculate the averages (p?), (¢?) in the canonical ensemble at temperature T.

(c) Calculate the internal energy U = (H) in the canonical ensemble.
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Harmonic Oscillator Solution

(a) In the microcanonical ensemble, the energy surface is the circle p2 -+ q2 — 2F of radius
r = v2EF where the constant E is the total energy. This energy surface is parametrized
in polar coordinates by

q = r Cos6, p=rsing
Hence in this ensemble

_nq2dpd 27 2 052 0 d 2F
<q2>:fH_Eq pQ_for _ “E _ g

Ju=pdpdq & do 2
where we have used the fact that the element of arc length is ds = rdf with r constant.

Similarly, (p?) = E. In fact, by symmetry, we must have (¢2) = (p?) = %(2E> — F without
evaluating any integrals!

(b) In the canonical ensemble with inverse temperature g = 1/kT

50 _B2
%) = (¢°) = fpare = Zoqoe 27 dg =1 _yr
—BH 3
[re BHJI [0 e_§q2dq B

where we have used symmetry and evaluated the Gaussian moment integral.

(c) In particular, in the canonical ensemble, this gives

(H) = <%(p2 L q2)> = kT = n(3kT), n=2=# of degrees of freedom

in accord with the equipartition theorem that asserts that each (participating) degree of
freedom has kT of energy.
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Overview and References

Overview:

® T he goal of statistical mechanics is to describe the behaviour of bulk matter starting from
a physical description of the interactions between its microscopic constituents.

® The second part of this course introduces the Ising model and other lattice spin models,
the thermodynamic limit, convexity and thermodynamic stability, one-dimensional models
including Tonks - van der Waals gas, the transfer matrix techniqgue and mean-field theory.

References:

® C.J. Thompson, Classical Equilibrium Statistical Mechanics, Oxford Science Publications
(1988).

® J. M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford, 1992.
® K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987.

® R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London,
1982.

® H.B. Callen, Thermodynamics, Wiley, New York, 1960.

® H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University
Press, 1971.

® C. Domb and M. S. Green/C. Domb and J. L. Lebowitz, Phase Transitions and Critical
Phenomena, Vols. 1-14, Academic Press, London, 1972—1994.
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Lecture Outline

Topic 4. Lattice Spin Models
10. Ising paramagnet

11. Ising ferromagnets

12. Ising lattice gas

Topic 5. Thermodynamic Limit

13. Extensive functions and thermodynamic limit
14. Existence of thermodynamic limit

15. Convexity and thermodynamic stability

Topic 6. One-Dimensional Models
16. Open/periodic Ising spin chains
17. Tonks gas

18. Tonks-van der Waals gas

Topic 7. Mean-Field Theory

19. Van der Waals-Maxwell fluid

20. Curie-Weiss theory of ferromagnetism
21. Equivalent neighbour model

0-3



4

10. Ising paramagnet
11. Ising ferromagnets
12. Ising lattice gas

Lattice Spin Models

Ernst Ising (1900—1998) Lars Onsager (1903—-1976)
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Lattice Spin Models

® In many applications of statistical mechanics the particles are fixed or localized in space.
In such cases there is no kinetic energy contribution to the Hamiltonian. Within a magnetic
crystal, for example, the atoms have an intrinsic angular momentum or spin. The interactions
between these discrete spins give rise to the magnetic properties of the material.

® A spin Hamiltonian for a system of N atoms (particles) is of the form

H(o) =V (o1,00,...,0N)

where o = {01,0p,...,0N} denotes the configuration and the spin o; is a discrete variable
describing the state of the particle at the lattice site ».

® The canonical partition function is then given by the configurational sum

Zn = ) exp(—BH(o))
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Ising Paramagnet

® In the presence of an external magnetic field A, the magnetic moments or spins of atoms
within magnetic materials tend to align themselves with the field. The first explanation of
this phenomenon was due to Langevin in 1905.

® For simplicity, let us assume that the spins are given by

+1, if spin ¢ is parallel to h
O; —
—1, if spin ¢ is antiparallel to h

Such two-valued spins are called Ising spins after Ernst Ising who first studied such models
in 1925.

® The Hamiltonian or energy function for the Ising paramagnet is

N
H:—hZOZ‘, h >0
1=1

Clearly, the lowest energy (ground) state occurs when all the spins align with the external
field, that is, o; = +1 for all «s.
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Paramagnet Partition Function

® If we set B = Bh, the canonical partition function is given by

Zny = ;exp (Bh 'iai)

= Z Z Z eBo1eBo2  Bon = (2cosh B)Y
o1==x1loo==x1 on==1

® The (intensive) free energy per spin v is thus

SA% 1
_ — _ — log Zxr = log(2 cosh B
B ~ = % 092N g( )

® The magnetization is

. Z(% Ji) exp (B g: O'Z)
;exp <BZ;UZ)
- %%lOgZN = —8%(/31#) = —Z—f = i 2

® In the absence of an external magnetic field (B — 0) there is no permanent magnetization

as in ferromagnetic materials such as iron and nickel.
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Ising Magnets

® In magnets, such ferromagnets, antiferromagnets and ferrimagnets, there are additional
interactions between spins that give rise to the cooperative alignment or anti-alignment of
spins in the absence of an external magnetic field. The first such model of a magnet was
due to Ising and Lenz.

® The Hamiltonian of an Ising magnet is

N
H = — 3 Jijo05—hd oy = — > Jijoio5—h> op = —5 ¥ Ty o005 — hZUz
(i,7) i i< i i =1

where the first sum is over all distinct pairs of spins on the lattice and Jz-,j = Jj,i iIs the
strength of interaction between the spins at sites ¢ and j with J; ; = 0 for all j.

® To energetically favour the mutual alignment of spins, as in a ferromagnet, we assume
J . > 0 for all = and 5. Physically, the interactions between spins in a magnetic substance are
short ranged. The simplest possibility is nearest neighbour interactions so that

J, 1,7 adjacent

Jij = |
0, otherwise
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Ising Lattice Gas

® The Ising model can also be interpreted as a model of a lattice gas. Consider a system of
N particles on a regular lattice A of V sites corresponding to V cells.

® A typical interaction potential ¢;; = ¢;; = ¢(]i — j|) between particles of gas is of the
Lennard-Jones form with a hard-core repulsion and an attractive long-range tail. We therefore

introduce occupation numbers
1, if site (cell) j is occupied
ti =
J . . .
0, if site (cell) 5 is unoccupied

so that the hard-core repulsion excludes multiple occupancy of a site (cell).

® The Hamiltonian of the lattice gas is then

— 1
H=—35 > ¢ijti;
i, EN

with ¢j,] = 0 and

tj:N
1

.

V
j:
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Partition Function of the Ising Lattice Gas

® T he canonical partition function is

Zy =Y exp(—BH)
t

where the sum on t is restricted by 2}/21 t; = N. Similarly, the grand partition function is

O O V
=(V\T,2) = Y. N2y = Z =1t 38 Lij Pigtits
N=0 N—Oz
j=1 J

\% 1
Z »2aj=1 tj 655 Zi,j sz]t 17

where Zn = 0 for N > V and the configurational sum over t = {t1,to,...,ty} iS unrestricted.

® To0 see the equivalence of the Ising magnet and the lattice gas observe that we can set

tj = 5(1—0y)
with o; = +1. Substituting this into the grand partition function gives

Z€8Z@]¢23(1 o;)(1— Uj)—|—2|OgZZ(1 o)

—_ egzw%ﬁ-v'ogz Z 82”@30103 (BZ ¢zg+2|092)z )

since Zj qbij IS independent of ¢ for regular perlodic lattices. T his establishes a correspondence
with

Jij = % b5, Bh = -2 ¢;;— Slogz
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Ising Magnet/Lattice Gas Correspondence

® This correspondence extends to all the thermodynamic quantities for the gas and the
magnet (even though we have not solved either). For example, we have

1 g= 1
v log = = %Z ¢ij + 5109 z + =~ log Z{m29ne
J

BP

)
o —Bh_gzjij_ﬁ?
J

where W is the canonical free energy of the Ising magnet.

® Similarly, the density p of the lattice gas is related to the magnetization m by

= 5= Se-)
(-G 5)) == m

and so on where we use the fact that (¢;)g.qnd = (%(1 — @) emmoienl-

® The Ising model can also be interpreted as a model of a binary alloy such as brass which
is an alloy of copper and zinc. In this case

1, if site 5 is occupied by an Cu atom

t; =
J o . .
O, if site y is occupied by an Zn atom
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13. Extensive functions and thermodynamic limit
14. EXxistence of thermodynamic limit
15. Convexity and thermodynamic stability
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T hermodynamic Limit

® In general, it is impossible to evaluate the partition function of an Ising model on a lattice
of N = 6 x 1023 sites. Moreover, for finite N, the extensive free energy W given by

— BV = logZy = IogZe_H/kT
o

is an analytic function of h and T' > 0. This follows because the Boltzmann weights are
analytic, so the finite sum giving Z,; is analytic and Zx > 0 so the logarithm is analytic.

® Effectively N is infinite and what we need to evaluate is not the free energy W, which is
extensive and grows with the size of the system, but rather the free energy per site ¢ in the
thermodynamic limit

1
— By = — |lim E\U = |im NlogZN

N—oo N N—o00

The free energy per site @ is an intensive quantity. The thermodynamic limit must be taken
“in the sense of van Hove"” so that, as N — oo in d dimensions, the region A contains an
arbitrarily large d-dimensional hypercube centred on the origin. This limit, which is often
written A — oo with N = |A|, ensures that the limiting region is properly d-dimensional.

® It can be shown quite generally that, for finite interactions, this limit exists and is
independent of the boundary conditions provided the interactions decay sufficiently rapidly
with distance. However, the resulting limiting free energy need not be an analytic function
of the thermodynamic variables such as h and T.
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Phase Transitions

® Mathematically, a phase transition should manifest itself as a singularity in the
thermodynamic functions. If the free energy is an analytic function of the state variables, then
all of the thermodynamic functions obtained by differentiation are also analytic. A natural
definition, therefore, is that a phase transition point is a non-analytic point of the limiting
free energy ¢ or pressure P as a function of temperature and the other state variables.
Points where the limiting free energy is singular (nonanalytic) are called phase transition
points. This nonanalyticity leads to singular behaviour (discontinuities or divergences) in the
thermodynamic functions such as order parameters, internal energies and specific heats.

® The ideal gas and the paramagnet, do not undergo phase transitions or abrupt changes
of phase. The ideal gas does not admit a liquid or solid phase only a fluid phase and the
paramagnet does not exhibit a ferromagentic phase which is spontaneously magnetized in
the absence of an external magnetic field.

® For a gas, described by the grand canonical ensemble, the limiting pressure in the
thermodynamic limit is defined by

. 1 —
p=(N)/V

where p is the particle density.
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Existence of Thermodynamic Limit

® The limiting free energy will only exist for appropriate classes of interaction Hamiltonians
with sufficiently rapid decay of interactions at large distances.

® Consider an Ising magnet on a square lattice with nearest-neighbour interactions and free
boundary conditions (so that the spins are summed over freely on the boundary) and let
Y(N) = W/N be the intensive free energy so that
1
— = —03 |lim N)= Iim —Ilo exp(—BH
B GOSN HlodPRe D3 H)
where

H(N)=—-J ) 00
(i)
with 2™ spins along the side of the square so that N = 2" x 2" = 22n,

® \We decompose this Hamiltonian as

H(22") = H(22(=1) 4 Hy(22(n—1))
+ H3(22(n=1)) 4 H,(22(n—1)) 4 H

where H’ is the contribution to the energy from the (dashed) bonds in the corridors.
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Division into Cells

® The two-dimensional square lattice, with 2" spins on a side, divided into four cells
(quadrants). Here n = 3 so 2" = 8 and each cell has on—1l — 4 spins on a side. The
four corridors emanating from the center (indicated with dashed interaction bonds) are one-
dimensional. As n — oo, the length of both sides of the square become large so that the
thermodynamic limit is approached in the sense of van Hove.
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Estimates

® \We now estimate

|H'| < 4]g] 271 =2ntl

and

-

-
o o (o) (o) o

— 1 4
— eXp(2n+ B|J|)222(n—1)

_ Ze—BH _ 172 3Y4€—B(H1—|—H2—|—H3—|—H4—|—H’)

< ot () (57 (55 ()

® But y(N) = _BLN log Zn so that

9(22) > 422Dy - L
® Similarly,
Zoyon > exp(=2"T1B81J)) Z55, 1y
and
$(227) < (22D) + 2'7;]_'1
Hence
w(22M) (22D < T
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Cauchy Sequences

® To show that ¢ (22™) posseses a limit ¢ as n — oo we show the sequence (22") is Cauchy

‘¢<22(n—|—m)) . ¢(22n)‘ < ‘¢(22(n—|—m)) . ¢(22(n—|—m—1))‘
i ‘¢<22(n—|—m—1)) . ¢(22(n—|—m—2))‘ R ‘¢<22(n—|—1)) . ¢(22n)‘

IA

1 1 1
|J| (Qn—l—m—l + on-+m—2 + ?)

n+m-—1
= |J Y 27
k=n

—~ ~—k |J|
< |J] Y2 = oo »0 asn — oo
k=n

® Since Cauchy sequences are convergent

Y = lim ¢(N)

n—oo

exists. Taking m — oo Iin the above results gives

|¢ — ¢(22n)| = |im |¢(22(n+m)) _ ¢(22n)| < |J|

mM—00 2n—1

so the convergence is exponentially fast.
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Related T hermodynamic Limits

® The result

2\J
b — p(L?)| < |T|
follows by considering lengths M = 2™L on a side.

® Similar arguments apply for other boundary conditions (eg. periodic boundary conditions)
to show that the thermodynamic limit is independent of the boundary conditions.

® The arguments also generalize to higher dimensions, to larger classes of interactions (finite-
range or with suitable long-distance decay) and to continuum systems.

® Roughly speaking all that is required is that, for large system sizes, the surface energies
obtained by dividing the volume into cells are small compared to the bulk energies.

® The theorem for the existence of the thermodynamic limit can break down if any of the
interactions become infinitely strong J — o0

-7



Convexity

Definition: A function f(x) on [a,b] is convex on [a,b] if for any A € (0,1)

f(Az1 4+ (1 = Nz2) < Af(z1) + (1 — A f(22)

In words, f(x) is convex if the straight line chord joining the points (z1, f(x1)) and (x», f(x2))
lies entirely above the curve of f(x). The function f(x) is concave if —f(x) is convex.

® The function f(z) = e% is convex on R and f(x) = logxz is concave on (0,c0). A linear
function is both convex and concave.

® A convex function defined on an open interval is continuous and piecewise differentiable,
that is, differentiable at all but at most countably many points. It can have have corners (at
the points where it is not differentiable) and straight line (polygonal) segments.

® A C1 function f(z) is convex if and only if, at each x = zg, the tangent to the curve lies
entirely below the curve

f(xo) + f'(x0)(x — x0) < f(x)
® If f(z) is C? on [a,b], then f(z) is convex on [a,b] if and only if f”(z) > 0 on [a,b].

Theorem 1 (Limits and Convexity)

If the pointwise limit f(x) = limn—co fn(x) Of the convex functions fn(x) exists, then f(x) is
convex. Furthermore, if fn(z) is C? and convex and f(x) is differentiable, then
| B T dfn _ d _df
nl|_>moofn(a;) = f(x) = nlhmma_@nlbmoof”@) =—
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Convexity and Thermodynamic Stability

® Let )\ be a thermodynamic field, such as J or h, that appears linearly in the Hamiltonian

so that

— BH = Hg + \H;

® Then the free energy is a concave function of A, that is,

9%°wv 92

® In particular, if

ZN = ZB—BH — ZeHo-l-)\Hl
(o) (o)

this follows because

o2 o
_ |O O+)\H1
ox2 9 ;e

o [, HyellotAH: 5,
= —(H1)
N | X, eflotTAHy O\

Yo HE Mot (52, HyeHoti )2
S eHotAHr (Y eHot+AH1)2

= (HD) — (H1)? = ((Hy—(H1))®) >0
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Convexity in Ising Magnet/Lattice Gas

Consider the Ising magnet
H = — Z JijUz'Uj_hZUi

i,JEN iEN
® By convexity, we can interchange the order of limits and differentiation so that
. 1 0w o . |\ oY
m=—-— lim —— = lim -

Neoo NOh  OhNooo N  Oh

® T he parameter A = B = ph appears linearly in —gH. It follows from convexity that

1 om 1 90m

=2 _10gZy = (=S o) = T2 = 29" >
Nop2 0N aB<NZ§\JZ> OB ~ B Oh

so that, in a finite or infinite system, the magnetization or average magnetic moment m is a
non-decreasing function of the external magnetic field h.

® Similarly, in the grand canonical ensemble for the Ising lattice gas we start with

1
P = —log=
B Vg

00
— Z ZNZN — Zezi,jﬁbijtitj‘FBsz:ltj
t

N=0
1 0 /1 o0
= — = z—|—log=)| = z—(BP
> v Z@z(V 2 ) Z@z(ﬁ )
where v 1 3
v = —— = — = specific volume
(N) p
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T hermodynamic Stability

® From the previous relations, we find

) e
_ a(gi)Q (%Iog E) — %<(N— (V))*) > 0

Here the result again follows by convexity since, writing z = eﬁﬂ, we see that the field Su

o0
appears linearly in the exponential (Hamiltonian). It follows that a—v < 0 so that p increases
Z

as z increases.

® Using v = v(T,z) to eliminate z gives P = P(v,T). Holding T fixed means that v and P
are effectively functions of one variable and

P P 1
gOP _ 40P0z _ 10z
Ov 0z Ov vz Ov
In words this states that, at constant temperature, increasing the pressure on a fluid
compresses it (ie. decreases its volume). This intuitive result is called thermodynamic

stability and it is usually stated by asserting that the isothermal compressibility K is positive

10
Kp = ——=2= >0
v OP

2-11



6: One-Dimensional Models

16. Open/periodic Ising spin chains
17. Tonks gas
18. Tonks-van der Waals gas

Johannes Diderik van der Waals (1837—1923)

Photographs (© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)



Open Ising Spin Chain

® The limiting free energy of the nearest neighbour Ising model on a (one-dimensional) chain
was evaluated by Ising in 1925.

® The free energy should be independent of the boundary conditions so let us begin by
solving the open chain (free boundary conditions). The Hamiltonian of the open Ising spin
chain in zero field is

N-1

H=—-J Z 0041
1=1

® Setting K = gJ, the problem is to evaluate the partition function
N—1

Sexp (K X oioiga)

o i=1

Z . Z oo Koy_i10n
o1==1 on==1

ZN

= Y (2coshK)¥~1 = 2(2cosh k)N 1
o1==1

Hence

1
— By = lim NlogZNzlog(QcoshK)

N—00
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Correlations in Open Chain

Consider an inhomogeneous open Ising chain

N-1

H = — Z Jioi0; 41
1=1

® The probability that o; and o;4,. are parallel is

where the correlation function is

Prob(o; = 04,) = <%(1 + 0i0i+r)> =11 + (0404+))

<0i0i+r> —

> 0ioitrexp(—BH(0)) .
S exp(—BH(a)) P (- E)’

T — OO

and the correlation length ¢ is a measure of the distance over which the spins are corelated.
Now we have the identity

® So

and

Hence

N-1 N-1
LHS = Zexp{z Kioioi11| = 2 ]| 2cosh K;
o i=1 i=1
0 0 0 0
aKi...—aKi+r_1LHS aKi...—aKi+r_1RHS
LHS - RHS
<0iai+r> = (tanh Kz) e (tanh Ki—l—r—l)
— (tanh K)", K;, - K
f‘lz—logtanhK—>O as T — 0

= RHS
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Closed Ising Spin Chain

® The limiting free energy of the nearest-neighbour Ising model on a closed (periodic) chain
can be evaluated, even in the presence of an external magnetic field, using transfer matrices.

® The Hamiltonian of the closed ferromagnetic Ising spin chain in a field is

N N
H=-J)Y ojo;41—h)>_ oy J >0

The problem is to evaluate the partition function

N N
ZGXD (K Z 0;0;41 + B Z Ui)

=1 =1

ZN

N
> exp [KUiUH—l -+ %B(O‘i -+ O‘Z'_|_1)}
=1

g 3

where K = §J and B = 8h and, since the chain is periodic, on41 = 071.

® Using periodicity, we have symmetrically shared the magnetic field B between the sites 3
and 7+ 1.
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Matrix Trace

® Abstractly, a trace on an algebra of operators is a linear functional tr satisfying

tr(cA+ BB) = atr A+ pBtrB, tr AB =tr BA

where A, B are operators and «, 8 are scalars. It immediately follows that tr is cyclic, that is,
trABC ...G =trBC...GA.

® A matrix trace on (real or complex) n x n matrices A with entries A;, is defined as the
sum over diagonal entries

n
TrA= > Aj,
j=1
n n n
n n
TrAB =) (AB); = Z Z A;;Bj; = Z Z = Y (BA);; =TrBA
1=1 1=17=1 j=1:=1 j=1

® From cyclicity, the trace Tr is invariant under similarity transformations (a change of basis)

TrS 1As=Trass1=T1r4a

Any matrix A can be brought to upper triangular (Jordan canonical form) by some similarity
transformation S. Since the diagonal entries of the triangular matrix T = S—1AS are the
eigenvalues >\j of T and A, it follows that

n
TrA=TrT = ) _ )
j=1
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Transfer Matrix

® Let us define a 2 x 2 transfer matrix T with elements

T_ _ = {(o|T|c") = exp [KJJ’—I—%B(J—I—J/)]

o,0

that is

(-1|T|1) (~1/T| 1) it

(& (&

T = <<1|T|1> (1|T|—1>> _ <6K+B e_K>

where we have introduced Dirac’'s bra and ket notation (bralc|ket).

® \We can then write

Zy = Y ) (01|T|o2)(o2|T|o3) ... (on_1|T|on){(on|T|o1)
01 ON
® T hese are matrix products so
Zy = Y (o1|TNjoy) = TrTV = X+ 2V
01
where Ay > A_ are the eigenvalues of T'. Since T'is a real symmetric matrix, it is diagonalizable
with real eigenvalues L.

® The transfer matrix technique has reduced the problem of calculating the partition function
to a problem in linear algebral!
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Transfer Matrix Eigenvalues

® The characteristic polynomial of T is

A2 — (2ef cosh B)A 4+ 2sinh2K =0

SO

As = e cosh B + \/e2K sinh2 B 4 2K

and for T" > 0 we have >\+ > A_ > 0.

® It follows that

1 y1osOY +2Y) = Toa[1+ (3]
—log Z —log (A M) = —log A} |1l —
~7 109 Zy 7 109(AL +A2) Ng++A+
1 A\
= log A\ —log |1 o
9xe+pios 1+ (F)
— logAy  as N — oo.

® Hence the free energy per spin ¥ in the thermodyamic limit is given by

1
—ByY = |lim NlogZN = log A4

N —00

— log(2coshK) as h—0

Since the limiting free energy per spin is independent of boundary conditions, this result

agrees with the open spin chain result for h = 0.
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No Spontaneous Magnetization in 1-d

® The magnetization is

0 sinh B

T a5 (BTP) ~ 9B log Ay =

Clearly, 0<m <1 and m — 1 if either J - o0, h - oo or T' — O.

® In zero field (h — 04+) the magnetization vanishes, so there is no residual or spontaneous
magnetization! Moreover, for T > 0, the limiting free energy is an analytic function of h and
T so the Ising spin chain does not undergo a phase transition. This is a general feature of
one-dimensional models with finite-range interactions.

Correlation Length

® The correlation length in a field can also be calculated using the transfer matrix giving

— —logtanh K as h—0

-7



van Hove’s T heorem

Theorem 2 (van Hove)
The limiting free energy 1 (h,T) of the one-dimensional finite-range Ising model

N
H=- > J(j—i)aiaj—hZJi
1<i<j<N i=1
with .
J(k) =0 for k> R, T primitive

is an analytic function of h and T for T > 0 and

lim m(h,T)=0 for T >0
h—0+

Sketch of Proof: For interactions with finite-range R, we can always define a finite-
dimensional transfer matrix T' by grouping R consecutive spins together as a ‘‘superspin’.
Since the elements of T' are Boltzmann weights, T is a nonnegative matrix (has all nonnegative
entries). The van Hove theorem then follows from the Perron-Frobenius theorem.

Theorem 3 (Perron-Frobenius)
If T is primitive, that is, TP > 0 (entry-by-entry) for some natural number p > 1, then

(i) There is a unique real positive (non-degenerate) eigenvector x1 of T

Txqy = \x1, x1 > 0 (entry-by-entry)
(ii) The eigenvalues \; € C of the n x n matrix T satisfy

A1 > [Aof 2 [A3] = 2| 20
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Perron-Frobenius and Analyticity

® By the Perron-Frobenius theorem, the eigenvalues of T satisfy

Amaa;:A1>|>‘2|2|>‘3|2"'Z|>‘n|20

that is, the largest eigenvalue is real, positive and nondegenerate. Hence

1
—log Z
NgN

%Iog(A]lV+..._|_>\TJ¥)
e i (2 ()" + ()

— log A\mmazr as N — oo.

® So

o Bw(h’a T) —

1
lim —logZx = log A\
N A gsZn Jd Amax

and m(h,T) are analytic because Amaz > O is analytic. But the magnetization is an odd
function of h, that is m(h,T) = —m(—h,T), so m(0,T) = 0 = m(0+,T) by continuity.
Theorem 4 (Analyticity) Suppose the entries of the finite n x n matrix

T=T(z)=T(z1,22,...,2m)

are analytic in z in some common domain D. Then an individual eigenvalue \;(z) is analytic
in z € D except possibly when it coalesces with another eigenvalue, \;(z) = \;(z) for some i.
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Spontaneous Magnetization in Two or More Dimensions

® In sharp contrast to the one dimensional Ising model, Ising models on cubic lattices in two
or more dimensions

H=-J Z 005 — hZai
(2,9) z

do exhibit spontaneous magnetization and therefore undergo phase transitions!

mo(T) = lim m(h,T) >0, T < T

—0+

® The zero-field Ising model on the square lattice was solved by L. Onsager in 1944 and
the spontaneous magnetization mg(7T) was calculated by C.N. Yang in 1952.

e (T)l o h A
0.8 I m > O
0.6 I
f ® >
04 I TC T
02+
m <0
| —
0.0 0.5 1.0 1.5
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Other Lattice Models

® The spin-1 Ising model, with spins g; =0, £1, is

H=-J Z 005 — hzai
(i,9) .

® The Q-state Potts model, with spins 0; = 1,2,...,Q, is

H=-J)> 6(04,0;5) — h) (o, 1)
(4,.) U

where the Kronecker delta is

1, oc=o

§(o,0) = {

0, otherwise

® There are many other models with different symmetries (discrete, continuous, quantum,
etc.) which exhibit phase transitions and therefore are of much interest.

® The spin-% Ising model is also a model of a lattice gas with occupation numbers

1, < is occupied (o; = —1)

0, 4 is unoccupied (o; =1)

In this case the hard-core repulsion between atoms excludes multiple occupancy of a site. A
more realistic model of a gas, however, should allow for a continuous distribution of particles
with a non-zero diameter as in the one-dimensional Tonks gas.
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Finding Eigenvectors from Symmetry

® Solving the characteristic polynomial to find eigenvalues of 3 x 3 or larger matrices is not
usually practicable. However, if the matrix has symmetries, the form of the eigenvectors can
often be guessed so that the corresponding eigenvalues can be obtained indirectly.

Cyclic Matrices: Let the n x n matrix C be a cyclic (circulant) matrix so that its entries

are given by C . = ¢j_k mod n With j,k=0,1,...,n— 1. The matrix has cyclic Z, symmetry
because it commutes with the cyclic rotation matrix 2
( CO Cp—1 Cp_D *-- cl\ (O 1 0 --- O\
cq1 co Cp—1 *°* €D Oo0o1 - ---0
C=| ¢ ¢4 ¢ - c3|, Q=1|::: . |, c=7lcQ, QC=cQ
: : : el O 00 --- 1
Kcn_l Cn—2 Cp—3 *°* €0 \1 OO0 --- O)

The complex eigenvectors of the commuting matrices C' and €2 must be common. The form
of the complex eigenvectors can therefore be guessed in terms of the nth roots of unity wj

_ _ 2 —1\T __ 2Tij
C’vj—)\jvj, vj—(l,wj,wj,...,w;-b ) ; Wwy; = € sz/n
This yields the complex eigenvalues
n—1 -
)\j=2chn_k, 7=0,1,....n—1
k=0

This is recognized as the discrete Fourier transform. If C is also a real symmetric matrix with
cp = ¢,_1, then the eigenvalues are real.
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Z~> Symmetric Eigenvectors

® Let A bediagonalizable with a Z, symmetry so that it commutes with an involution matrix R

A= R 'AR, RA= AR, R?> =1, R=R1

Since A and R commute, they are simultaneously diagonalizable with a common set of
eigenvectors. To see this, let x be an eigenvector of A

Ax = \x
and define the symmetric/anti-symmetric orthogonal projectors
Pt=3U+R), Pf=Py, PP =P P =0 Pp+P =1IRPL=+P,
® It then follows that PLa are eigenvectors of R with eigenvalues r = +1 given by
R(Pix) = +(Prx) = r(Prx)
and simultaneous eigenvectors of A with eigenvalue A\

Az =z = APtz + P-x) =Pz + P_x) X Py
=  A(Pix) = A\(Pix) PLA = APyt

Exercise: Use symmetry to find the eigenvectors and eigenvalues of the Zo symmetric matrix
A and check your answer by factorizing the characteristic polynomial:

1 3 2 O 01 a C
A=13 1 3|, R=\|0 1 0|, Hint:Show eigenvectors Prx are of the form |b]| or | O
2 31 1 0O a —cC
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Tonks Gas

® Tonks gas is a model of hard-core particles (spheres or rods) in one dimension, i.e., one-
dimensional billiard balls. The pair interaction (hard-core) potential is

oo, 0<r<a

¢(r) = Ppe(r) =
0, r>a
L1 L2 3 L N+1
— s B —
| | |
0 L L+a
® The Hamiltonian for N rods on the interval 0 <x < L is
H(x) = >  ¢pellzg —zj))
1<i<j<N
Note H is a symmetric function of x1, xo,...,x) and the kinetic energy is omitted.

® The canonical partition function (with Boltzmann counting) is

1

Iy = —/OL---/OLexp[—BH(w)]dwl...de — /---/Rexp [—BH(x)]dxy ... dzy

N

where R is the region
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Change of Variables

® Now exp(—pfd¢p.) =0 or 1 so

ZN:/--- | day...doy

where
R: 0<zi<zo—a, a<zo<z3—a,
o (-—1a<z; <ziy1—a,...

o, (N=1a<zy<zNyt1—0a = L.

® Changing variables to y; = x; — (¢ — 1)a we find that

O<y;<zmig1—a—(i—1)a = z;41 —ia = y;4q

® Hence

Y2 N

¢ YN Y3
Zy = [ dyy [ dyno1-- [ d dyy = —
N 0 YN 0 YnN-1 0 Y2 0 U1 NI

where ¢ = L — (N — 1)a is the effective volume.
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Equation of State

® Using Stirling’'s formula N! ~ (N/e)N, the limiting free energy is given by

1
lim —log Zy

—pY

N,L—oco N
L/N=v
L—(N—-1a
= 1 lim 1o
+N,L—>oo 2 N

= 1+ log(v—a)

where v > a Is the volume per particle. The |limit v — a is the close packing limit.

® T he pressure is

& kT

P = ——
ov vV —a

so the equation of state is

P(v—a) =kT

which is the ideal gas law with the volume per particle V/N replaced with the free volume
per particle v — a. The free energy is analytic for v > a so there is no phase transition.
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Tonks — van der Waals Gas

® In one dimension, Tonks gas is an improvement b A
over the ideal gas since it takes into account
the finite size of particles and the hard-core
exclusion between them. However, real particles
also interact through attractive Lennard-Jones
dispersion forces. A simple way to model this is
provided by the Tonks—van der Waals potential

() = dpe(r) =7, a>0 -

~Q

® The parameter « is the integrated strength of the attractive potential.

® This model is solvable but unrealistic because the strength of the potential should not
depend upon the size L of the system. The Hamiltonian is

8%
Ho= 5 |tnellei—o)-7]
1<i<j<N
— _O‘N(N_ 1) _I_HTonks
2L
® Hence
N(N —1
Zy = exp [BO‘ (QL )| ZTonks
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van der Waals Equation of State

® The free energy is given by

. 1 Ba
— By = N’I|Lr_r>10® I log Zn = S + 1+ log(v — a)
L/N=v
It follows that the pressure is
oY kT « o)
P —_— —— == — p— P —_
ov v—a 202 e 202

® The pressure is reduced, relative to Tonks gas, due to the attractive interactions of the
particles by an amount proportional to the strength o of the interactions and also proportional
to the square of the density p2 = 1/v2 which gives the probability of two particles interacting.

® The equation of state is modified to

(P—I—%)(v—a)sz

which is the celebrated equation of state proposed, on phenomenological grounds, by van der
Waals in 1873.
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(: Mean-Field Theory

19. VVan der Waals-Maxwell fluid
20. Curie-Weiss theory of ferromagnetism
21. Equivalent neighbour model

Pierre Curie (1859—1906)

Photographs (© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)



Gas-LiquidPhase Diagram

P A

® Isotherms in the p-v plane of the van der Waals Maxwell theory of a fluid. There is a
critical point at the critical pressure p = p. and critical specific volume v = v, and a 2-phase
coexistence region (gas at specific volume vg coexists with liquid at specific volume vp).
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Maxwell Double Tangent Construction

® Thereis a well known problem with the van der Waals equation of state. If the isotherms
are plotted for P as a function of v it is found that there are wiggles at low temperatures
where

Ov

— >0

oP
® This asserts that the gas actually expands as you labour to compress it and violates

thermodynamic stability!

® The remedy for this situation was provided by Maxwell who proposed the double tangent
formula

Convex

TOE ne() = 5

Envelope

for fixed T'.

® The van der Waal’s gas, modified by the Maxwell construction, is called the van der Waal's
— Maxwell theory.



® Schematic representation of the van
der Waals wiggle in a low temperature
isotherm of P = —%—15 plotted against w.

® The wiggle is removed by placing a flat
segment into the isotherm according to an
equal area rule as illustrated.

® Also shown is the corresponding kink
in the free energy isotherm with the
equivalent Maxwell double tangent (convex
envelope) construction.
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Maxwell Equal Area Construction

® The double tangent construction is equivalent to placing horizontal segments in the
isotherms according to an equal area rule. Such flat regions are found experimentally in
iIsotherms at low temperatures throughout the gas-liquid coexistence region.

® The Maxwell construction means that the free energy is no longer analytic and thus leads
to a phase transition.

® The van der Waals-Maxwell theory can in fact be obtained rigorously by taking a limit of
infinitely weak long-range potentials after the thermodynamic limit.
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Validity of van der Waals—Maxwell Theory

Theorem 5 (Lebowitz and Penrose 1966)

The van der Waals—Maxwell theory can be obtained rigorously in d dimensions by considering
a gas of hard-sphere particles with attractive pair potential of the form

o(r) = —y?exp(—|r|)
by taking the limit v — O+ after the thermodynamic limit. In particular, o is given by

o= —/¢(T)dr

and is independent of ~.

Chronology:

e Kac, Uhlenbeck and Hemmer (1963—4) d =1
e van Kampen (1964) heuristic argument in general d

e Lebowitz and Penrose (1966) rigorous result for general d
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Curie-Weiss Ferromagnet

® In 1895, Pierre Curie submitted his doctoral thesis describing his experimental findings on
the phase transition of ferromagnetic materials such as iron. The critical temperature at
which this phase transition occurs is called the Curie point.

® The classical theory of ferromagnetism was proposed by Weiss in 1907. T his
phenomenological theory, now called the Curie-Weiss theory, is based on the paramagnet

N
H = —heff ) 0
1=1

and assumes that, in a ferromagnet, the effective field heff consists of an internal field in
addition to the external field h.

® On the average the internal field, due to the cooperative alignment of the spins, is
proportional to the magnetization m so that the local effective field seen by a spin is

hepr = Jm+h

where the constant of proportionality J is called the mean-field parameter.
® Evaluating the magnetization then leads to the transcendental equation of state

m = tanh(ﬁheff) = tanh(Km + B), K = gJ, B = pgh
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Graphical Solution

® The self-consistency equation is used to determine m = m(h,T). Since the equation cannot
be solved analytically it is solved graphically in the form

Jm + h
kT

— tanh—1m

Given h and T, this equation can admit one, two or three solutions for the magnetization m.

® If the slope of the straight line is less than the critical value

J ——
kT.

there is just one solution.

® In general there can be more than one solution. But, if we assume that m and h have
the same sign as is physically reasonable, then for h > 0 the equation of state determines m
uniquely. This assumption is analogous to the Maxwell construction for the van der Waals

fluid.
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® Graphical solution of the self- ® Magnetic isotherms for the Curie-Weiss theory.
consistency equation.

A4-7



Sponaneous Magnetization

® The spontaneous magnetization mg, defined by

mo(T) = hingr m(h,T)

IS given by

- 0, T>T.=J/k
mo =
x, T <Te=J/k

where z is the positive solution of

r = tanh —

® The Curie-Weiss theory gives a topologically
correct phase diagram. m >0

® It predicts spontaneous magnetization and an
order-disorder phase transition in zero field from

a magnetized phase (T" < T.,, m > 0) to a ;
paramagnetic (nonmagnetized) phase (T > T, ‘
m = 0) as the temperature is raised through the m < 0

critical value T, = J/k called the Curie point.
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Equivalent Neighbour Ising Model

® The results of the Curie-Weiss theory can be obtained using the canonical ensemble by
starting with the equivalent neighbour Hamiltonian

J N
H=—— Z O'Z'O'j—hZO'Z', J >0
N1§i<j§N i=1
The sites labelled 1,2,..., N are all equivalent. They sit on the sites of a complete graph —

Nno lattice structure is assumed or needed.

® As for the Tonks—van der Waals gas, the interactions are unphysical because they are
independent of separation and depend on the size of the system N. (The factor of N is
needed to ensure the energy is extensive and that the thermodynamic limit of the free energy
exists.)
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Partition Function

® To calculate the partition function we begin by writing

1=1 1=1
so that
1 K 2 N
Zn = e 25K Y exp [—(207) +B ZUZ]
o 2N =1 =1

where K = 8J and B = Bh.

® Next we use the identity

©.@)
exp(%aSQ) = @/i/ dx exp(—%an + axS)
2T J—o00
with

{1 N
a=NK and S_NZ
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Integral Formula

® The partition function is therefore

00 N
Zn ~ Z / dz exp[ —AINKz?+(Kz+ B) > ai]
- 1=1

N/ dx e ~5NK? [2 cosh(Kz + B)]"Y

~ /_o; dx exp [N f(x)]

where

f(z) = —3K2? + log 2 cosh(Kxz + B)

and we have omitted the constant

Ay = NK .
27
® The limiting free energy per spin is thus
B = i —log Zy = [ — / exp[N f(z)] d
N—oco N 94N = N—oco N d . v *

This follows since

1 1 NK
lim —Ilog Ay = lim —log e K/2| =0
N—oo N N—o0 2T
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Laplace’s Method

® For large N, the integral for Z) is dominated by the maximum value of the integrand so
1 can be obtained by Laplace’'s method giving

— By = max [_%sz + log 2 cosh(Kxz + B)} = f(«*(B),B)

where the maximum occurs at x = =*(B) and
f(z*(B), B) = —1Kz** + log 2 cosh(Kz* + B)

® Differentiating with respect to z, we see that x = 2*(B) must satisfy

x = tanh(Kz 4+ B)

This is precisely the Curie-Weiss equation of state with x identified with the magnetization

m = (9% (—By) =tanh(Kz*+ B) =z

Since ga{* = 0, the derivative is given by

of
0B

o =L @) B = L4 (5 =

— tanh(Kz*+ B
92+ dB ' \oB )x (K" + B)

® Furthermore, for the maximizing solution m = z* and h are always of the same sign as
was previously assumed. The equivalent neighbour Ising model therefore undergoes a phase
transition at the critical point h =0, T =T, = J/k.
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Validity of Curie—Weiss T heory

Theorem 6 (Siegert and Vezzetti 1968)

The Curie-Weiss theory can be obtained rigorously in d dimensions by considering a
ferromagnetic Ising model with pair interactions

Jii = J(|i — 3]) = v*exp(—]i — j|)

by taking the limit v — 04 after the thermodynamic limit. The mean-field parameter J is
given by

7= J(i - j)
J

and is independent of ~.

Theorem 7 (Pearce and Thompson 1978)

The Curie-Weiss theory can be obtained rigorously from a ferromagnetic Ising model with
nearest-neighbour interactions of strength

J

2d
on a d-dimensional hypercubic lattice by taking the limit d — oo after the thermodynamic
limit.
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Mean-Field Theory

® Mean-field theory is first approximation used in studying new models.

® Mean-field theory usually gives a qualitatively correct phase diagram but gives poor results
near critical points.

® Other approaches to mean-field theory are the variational method (Bogoluibov inequality)
and the Landau expansion (functional integral).

® Mean-field theory gives upper bounds on magnetization and critical temperatures.

® Validity of mean-field theory is reviewed by Thompson (Prog. Theor. Phys. 1993).
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Critical Phenomena & Applications
APCTP, March 2018

Paul A. Pearce

School of Mathematics and Statistics
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Abstract: This is the third part of a three part series of lectures presenting an introductory
Masters level course on Statistical Mechanics. Each part consists of about 6 lectures.
The first part introduced the classical ensembles of Gibbs with applications to the ideal gas.
The second part introduced lattice spin models, the thermodynamic limit, one-dimensional
models and mean-field theory. The third part will cover scaling and universality in critical
phenomena, the renormalization group, random walks and percolation.

® Accompanying Problem Sheets and Solutions are available from Alireza Akbari.

® These Lectures are supported under an ICTP Visiting Scholar Award in conjunction with
the ICTP Affiliated Center at APCTP.

© These materials were prepared by Paul A. Pearce, 2011-2017
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Overview and References

Overview:

® T he goal of statistical mechanics is to describe the behaviour of bulk matter starting from
a physical description of the interactions between its microscopic constituents.

® The third part of this course introduces critical exponents and the concepts of scaling and
universality in the theory of critical phenomena. These concepts are placed into the framework
of the Renomalization Group and illustrated by applying the Migdal-Kadanoff bond moving
approximation to the Ising model. The course concludes with applications to random walks
and percolation.

References:

® C.J. Thompson, Classical Equilibrium Statistical Mechanics, Oxford Science Publications
(1988).

® J. M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford, 1992.
® K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987.

® R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London,
1982.

® H.B. Callen, Thermodynamics, Wiley, New York, 1960.

® H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University
Press, 1971.

® C. Domb and M. S. Green/C. Domb and J. L. Lebowitz, Phase Transitions and Critical
Phenomena, Vols. 1-14, Academic Press, London, 1972—1994.

0-2



Lecture Outline

Topic 8. Critical Exponents and Scaling
22. Critical exponents

23. Mean-field critical exponents

24. Universality and scaling

Topic 9. Renormalization Group

25. Renormalization group flows

26. Linearization around fixed points

27. Migdal-Kadanoff bond moving approximation

Topic 10. Simple and Random Walks
28. One-dimensional random walk

29. Walks on graphs and hypercubic lattices
30. Return probability and Polya’s theorem

Topic 11. Percolation

31. Bond and site percolation
32. Percolation in one dimension
33. Percolation on Bethe lattice
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8: Critical Exponents and Scaling

22. Critical exponents
23. Mean-field critical exponents
24. Universality and scaling
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Critical Exponents
® The behaviour of thermodynamic functions in the vicinity of a critical point is characterized
by critical exponents. These describe the power law behaviour asymptotically close to the

critical point.

® Assuming f(x) > 0, we write

f(x) ~x2¢ as z= — 0+

whenever the limit

[@
= lim °9/)
x—0+ logx

exists. This limit defines the critical exponent ¢ of the function f(x) at the critical point
x = 0. Similarly, we define one-sided limits for x — 0— and two-sided |limits for x — O.

® In statistical mechanics there has been a proliferation of critical exponents which now
exhaust the Greek alphabet!
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Definition of Critical Exponents

Magnetic Critical Exponents

Exponent Definition
o Co~ |t|T% t—0
3 mg ~ |¢t|8, ¢t — 0—
~y xo~ [t|”7, t—0
) h ~sgn(m)|m|®>, h—0,T =T

Fluid Critical Exponents

Exponent Definition
o Cy ~[t|7% t—0
B pr —pg ~ |t%,  t—0—
gt Kp~t|77, t—0
5 P — Pe ~sgn(p — pc)lp — pel°,

lp— pc| = 0, T =T,

X0

PL.,G

A T —T¢
Tc

Y oY

Oh’ 0T T on =0
821

T 9T2|p=0
zero-field specific heat

921
 Oh2|p=0

zero-field susceptibility

liquid, gas density

821

OT? v =const

constant volume specific heat

iIsothermal compressibility

OP
OV | T=const
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Mean-field Critical Exponents

et us obtain the critical exponents of the Curie-Weiss ferromagnet:

o — Odisc

® The non-analytic zero-field free energy is

’ (log 2, T > 1T
——— =/ < 2
- og2cosh|—— ), T < T
"ok 1199 kT ¢
with
mo = tanh Kmg
® Hence
d 0, T > T
=1 () = |
dI' \'T —%Jm%, T <1T¢
and
(
o) T > T
dU ) ! = °
dT 1 79Mg
—=J —=, T <1
( 27 4T’ S e
dm?2 3k 3
Since T o 7 Co i 5 k and this yields a jump discontinuity in Cy SO a@ = 0; ¢
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B=1/2

® If we set h = 0 then mg is small near the critical point T'= T, = J/k so we can Taylor
expand the equation of state

J 1
]:;I;O = Tcmoztanh_lmozmo—l—%mg—k...

® This gives

and hence as 1T' — T,.—

® Note that
dm3 3 3k
dT lr—7-  T.  J
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y=1

® The zero-field susceptibility is
dm

XOZBEB:O

But differentiating m = tanh(Km + B) implicitly with respect to B gives

dm . 1 —m?
dB 1-—K(1—m?)
and so
o = P mo)
1 — K(1—m3)
® It follows that as T — Tg
1 T ith 1
o ‘ T, K
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0=23

® Finally, if we set T'= T, = J/k then m is small for small h so we can Taylor expand the
equation of state along the critical isotherm

J h

vt T

h
=m—|—j=tanh_1mwm—|—%m3—l—...

Hence we conclude that as h — 0

m ~ hi/% with §=3
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Summary

® In summary, the critical exponents of the Curie-Weiss ferromagnet are

a = Ogjses

B=1/2,

v =1,

0=3

® These are the classical values. Analysis shows that the van der Waals—Maxwell fluid has
precisely the same classical values for the critical exponents.

® Typical experimental values for these exponents are

a~ 0.1,

8~ 0.33,

v~ 1.2,

b~ 4.2

for both fluid and magnetic systems in three dimensions. Clearly the classical critical

exponents are wrong!
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Some Critical Exponents

Model o B8 v ) Symmetry
Mean-Field Odisec 1/2 1 3 Zi>
2-d Ising Ojog 1/8 7/4 15 2>
3-d Ising 0.10 0.33 1.24 4.8 Lo
d > 4 Ising 0 1/2 1 3 Lo
2-d 3-State Potts 1/3 1/9 13/9 14 S3
Hard Hexagons 1/3 1/9 13/9 14 S3
2-d 4-state Potts 2/3 1/12 7/6 15 Sa
2-d Percolation —2/3 5/36 43/18 91/5 S1

® Clearly, the mean-field critical exponents are not generally valid.

® These systems represent different symmetry classes, such as, Zo, S3 and S4. Clearly, the
critical exponents depend on the type of symmetry. Within a symmetry class, for example
3-state Potts and hard hexagons which share an S3 symmetry, the critical exponents are the

Same.

® Observe that

a+20+v=2, v=p>6—-1)
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Universality and Scaling

® The critical exponents appear to be insensitive to the microscopic details of the system.
This empirical fact is embodied in the following:

Universality Hypothesis

For short-range interactions, the critical exponents depend only on the spatial dimension d
and the symmetries of the Hamiltonian H.

® Another important hypothesis in the modern theory of critical phenomena is the scaling
hypothesis. For a simple magnetic system, this takes the following form:

Scaling Hypothesis

T here exist two exponents y1 and yo such that, asymptotically close to the critical point, the
free energy can be written as

Y = Yanal T wsing

where v, IS analytic and the singular part v, satisfies

wsing(Aylta A2h) = Awsing@a h)

for all values of the scaling parameter X\, that is, wsmg is a generalized homogeneous function
of t = T}CTC and h. The exponents y1 = y¢, y» = vy are called scaling or Renormalization
Group (RG) exponents.
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Scaling Relations

® The Curie-Weiss ferromagnet satisfies the scaling hypothesis. In fact, we will show later
that the singular part of the mean-field free energy is

_ h
Weing(t, h) = min {_j s + %ts2 + 1—1284}

This is a generalized homogeneous function with exponents y; = y; = 1/2 and yo = y;, = 3/4.

® More generally, by differentiating the homogeneous relation satisfied by wsmg, it is possible
to obtain the exponents «, 3, v, 0 in terms of y; = y; and yo> = y;,. In this sense, the only
relevant fields are the temperature 7' and the magnetic field h. Hence only two of the four
critical exponents are independent. Explicitly, we will show that the exponents «, 8, v, 0
satisfy the two scaling relations

a+20+v=2, vy=p>6—-1)

These scaling relations are satisfied by the classical values of the critical exponents.
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RG Exponents Determine Critical Exponents

® Differentiating the homogeneous relation

for a magnet, we find:

Y1
5:L_y_2
Y1 1

wsing()‘ylta A2h) = )‘wsing(ta h)

82

Co = @@bsing ~ |t|_aa h=20
1
AY1CH(AY1E) ~ ACo(t set \ =
0(A71t) 0(t), 10

Co(t) ~ X¥171Co(x1) ~ [¢|7271/w1)

0
- — . ~ |t ﬁ% h=0
mo oh wszng S |

1
A2ma(N91t) ~  Amg(t), set \ =

t|1/v1
mo(t) ~ A2 lmg(£1) ~ [t~ W2—1)/n
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— 2y 1
T Y1

BL: B
X0 = gioVsing|, _~ [T h=0
1
)‘2y2 )\ylt ~ A\ t set \ =
xo(A71t) xo(t), S

xo(t) ~ N¥271yo(x1) ~ |t|—(2y2—1)/y1

_8 1/6
t=0 6hwsm9 t=0 A

1
A2m(Ayoh) ~ Am(h), set \ =

|h|1/Y2
m(h) ~ A2 lm(£1) ~ ||~ W2=D/v2

® Thus we verify that

1 1 2 1
a+25+7:2__+2<__y_2)+ v2 1 _

Y1 Y1 Y1 Y1 Y1

11—y Y 2y> — 1
5(5_1):( 2)( 2 —1)2 2 =
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Curie-Weiss Singular Free Energy

® For the Curie-Weiss ferromagnet

: h
wsing(ta h) = msm{_j s + %tSQ + 1—1284}

® EXxpand the free energy keeping only terms linear in

and h using J/kT. =1 and

T—-T. T
t = = _1
T. T.
J  T. 1 B_h_hl
kT T 14+t kT J1+4t

® After replacing ¢ — (x—B)/K, using a Taylor expansion and keeping terms linear in A and ¢,

we find that

where

B (¢, h)

= min {leQ—IOQQCOSh(K:I;—I—B)}

—o0<Ir<o0

_~ _(z — B)? — log 2 cosh
2K(:fc ) g
h

— min
—o0<LT<0oO

= min

— min

)

1 > _zh (27
21+ 0" — = (2

b 4 et

—o0<Ir<o0

~ min
—o0<T<oO

Bl=kT=@04+tJ~J t—0

)

&

T {%(1 + t) [x ~ AT t)r — log 2 cosh a:}
{
{ = Ysing(t, h)
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Free Energy Minima

® The Curie-Weiss free energy function f(z) = %th +24/124 ... for h=0and t > 0 or
t < 0. Fort > 0 there is a single minimum at x = 0. For t < O there are two minima at
x = +xg corresponding to the existence of a non-zero spontaneous magnetization.
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Curie-Weiss Homogeneous Function
® The Curie-Weiss singular free energy g, 4(t, h) is a generalized homogeneous function with
exponents z = 1/2 and y = 3/4. After replacing z — A/4z we find
wsing()‘l/Qta >‘3/4h’)

h
= min {—/\3/4x3+%/\1/2m2+1—12x4}

—o0<L <00
- h 1,2, 1 4
= )\ min —xr— =t =
—oo<x<oo{ x,]_l_2 o —|—12:U }

= A wsing(ta h)
with

wsing(ta h) =¥ (t, h) — Yana(t, h)
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Correlation Length and Hyperscaling

® The pair or two-point correlation function

G(i — §) = (o405) — (03){o5) = ((o5 — (o)) (o5 — (o))
measures the correlation between the deviations of o; and o; from their mean values. In the

completely ordered (aj = 1 for all j) and completely random (aj — 41 with equal probability
for all j) states, this correlation vanishes.

® As i and j become separated by large distances o; and o become statistically independent
s im [(oiog) = (oad(og)] = O
® Away from criticality, the approach to this limit is exponentially fast

G(i — §) = (010;) — (03)(0;) ~ exp (— |f‘€(_t)3|> Heil—ses, = T;CTC £0

where the correlation length £(¢) measures the distance over which the spins are correlated.

® At criticality, the spins are effectively correlated at all distances and the correlation length
diverges. More specifically, we can define a correlation length critical exponent v

E~tITY, t—0

The new critical exponent v is not independent and satisfies the hyperscaling relation

2 —a=dv, d = lattice dimensionality

For the two-dimensional Ising model, d =2, a = Olog and v = 1.
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Decay of Critical Pair Correlations

® More generally, the long-distance behaviour of the pair correlations is given by

G(r) ~ A(d)r? % Mexp <_§(rt))’ r=1i—j| — oo

where the amplitude A(d) depends on the lattice dimensionality.

® At the critical point (¢t = 0, £ = o), the pair correlations no longer decay exponentially.
Instead, the correlations decay with a power-law behaviour

(0i05) — (oi){oj) ~ i — 5|24, 2-d-n<0
® Again, the new critical exponent n is not independent and satisfies the scaling law
2—-n 46-1 5_d—|—2—77
d 6+ 1 d—247

For the two-dimensional Ising model, d =2, § = 15 and n = 1/4.

® Statistical systems with relatively short correlation lengths can be well studied by
perturbation or approximate methods such as mean-field theory. In constrast, systems close
to critical points with a very large correlation length, are generally extremely difficult to study.
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Renormalization Group

® The renormalization group approach to critical phenomena has its origins in the work of
Wilson, Kadanoff and others in the mid 1970s. Although the RG methods have never been
made rigorous, the renormalization group has proved invaluable as a language and heuristic
framework to understand the implications of scaling and universality.

® The basic idea of the Renormalization Group (RG) is to reduce the correlation length
£ — &£/b by a scale factor b > 1, and to simultaneously reduce the number of degrees of
freedom from N to N/ = N/bd, by applying a transformation that preserves the dimensionality
and symmetries of the system (and hence the critical exponents)

g = ¢/, L' = L/b, N’ = N/b?, b> 1

® The rescaling factor b applies to all lengths L — L/b. In principle, by successive
applications of the transformation, one moves away from the critical point to a regime
where the correlation length is small and the problem becomes manageable by perturbation
or approximate methods.
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Renormalization Group Transformations

® To specify an RG transformation, consider a general Ising Hamiltonian
H = — Z JA0 A

where A is the lattice with N = |A| sites. This Hamiltonian is characterized by the set of
interactions or couplings

K={K,=pJ4 : ACAN}

which we consider as a vector in a suitable vector space of interactions.

® Formally, a renormalization group transformation R, is a nonlinear operator given by

K' = Ry(K), b>1

or

Ky = fa(b; K), fa = {smooth functions}
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Semi-Group Property

® An RG transformation is assumed to satisfy the semigroup property

Ry o Ry = Rpyy = Ry o Ry, b,b > 1

under composition and the scaling properties

E(K') = b 1e(K), Z(K') = Z(K), H(K') = b (K)

® The RG transformations R, under different rescaling factors b6 do not form a group since

there is no inverse transformation (we restrict to b > 1).

® Note that the partition function remains fixed and that for a transformation relating

d-dimensional hypercubic lattices of side L, L’ respectively

1 1 (b)d pd  pd
L

N (@d
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Renormalization Group Flows and Fixed Points

® |et us assume that there exists a renormalization group transformation R,. Let us start
with a particular system specified by Ko and iterate the transformation to obtain a sequence
of vectors

K11 = Ry(Ky), ¢=0,1,2,...

such that
E(Kyqp1) = b Le(Ky) = b 26(Kp_q) = - = b De(K)

® Suppose now that K, approaches a finite limit K* as ¢ — oo, then K* is a fixed point of
Rb’ that is,

K*= lim K, 1 = lim Ry(K) =Rb( lim Kg> — Ry (K*)
{—00 {—00 {—00
® It follows that either
lim §(Ky) =&(K*) =0
{—00

or
§(Ko) = Jim be(K ) = oo, b>1, &(K*)>0

® This says that we either converge to a trivial fixed point with £&(K*) = 0 or £&(Kg) = oo,
that is, the initial system was at a critical point and we converge to a non-trivial (critical)
fixed point.
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Basins of Attraction and Universality Classes

® The critical exponents of a system can be determined by the behaviour of Ry in the
neighbourhood of the non-trivial fixed point that the system approaches.

® Each such fixed point will have a domain or basin of attraction, or collection of physical
systems, that iterate to it under the renormalization group flow. These domains of attraction
constitute the various observed universality classes of critical behaviour.

® If K™ is non-zero and finite, it corresponds to a system at a finite temperature and thus
E(K™) > 0 is non-zero (finite for an off-critical system or infinite for a critical system). Hence
a trivial fixed point (which has £&(K*) = 0) can only occur at K* =0 (T = o0) or |K*|| = oo
(T =0).

® It follows that a non-trivial fixed point must be unstable — since points near a non-trivial

fixed point with & < co must ultimately iterate to a trivial fixed point on the boundary of the
thermodynamic space (T'=0 or T = o).
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Linearization Around a Fixed Point

® Neglecting further neighbour interactions, an RG flow can be visualized by projecting onto
a 2-d space spanned by the nearest and next-nearest neighbour interactions Ky, Ko:

T=0
\/fixed point
K*
T = 0 >
fixed point KO,C K1

® Suppose Ko,c is an initial critical system that converges to the non-trivial fixed point K™.
Then if we start with K sufficiently close to Ko,c, we would expect K, for some large ¢ to
closely approach K* before diverging away to a trivial fixed point.

® Linearizing at the non-trivial fixed point, we write

KgZK*—I—k:g, k:g small for ¢ =~ L
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Linearized RG Equations

® The linearized RG equations are given by the Jacobi matrix

OK'
k ~ Ly ky, Ez[ A ]zﬁ A, B) = matrix, A, B CA
+1~ Lyky b= oK 5l i (A, B)
® Assuming that the matrix £, has a complete set of orthonormal eigenvectors ¢, with
eigenvalues A\; = A\;(b), i = 1,2,... leads to the eigenvalue equations
Lyd; = Nip;

® The semigroup property L,Ly = Ly = Ly Ly under matrix multiplication gives

N, (DN; (D) = N (b)) = Nj(b) = bY, y; = RG exponents

® Using the complete set of basis vectors ¢,, we can decompose

kp =) u,
i

where the coordinates u; are called scaling fields and where, by linearization, K™ is the origin

with coordinates u; = 0. Thus

kr4yn = Lykr = ?(Z w; ;) = Zuz b Pi = Zuz‘/\?fﬁi = Zuz b"Vigp,
{/ (/ (/ (/

,Cg : U; — bnyiui
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Relevant and Irrelevant Scaling Fields

® If [\;| > 1 (y; > 0), the effect of the scaling field u; will grow under further iteration and so
is designated relevant. Otherwise, if |[A;] <1 (y; < 0), the scaling field will have little effect
after further iteration and so is designated irrelevant. The case |A;| = 1 (y; = 0) is marginal.

® In terms of the scaling fields u;, we see that the free energy and correlation length are
generalized homogeneous functions

f(ula u, .. ) — bn&(bnylula bny2u27 . )

Y(ug,us,...) = b Mh(bWiug, b™2usy, .. .)

where A; = b% and b™ > 1 is arbitrary.

® At criticality, Ky — K™ and hence k; — 0 as £ — oco. Accordingly, b™iu;, — 0 as n — oo if u;
is irrelevant and u; = 0 at criticality if u; is relevant.

® For simple Ising magnetic systems there are just two relevant scaling fields

uq ~ t, uo ~ h, t,h — 0

where we assume that u; = uw1(¢) and u>» = us(h) are analytic and u, with n > 2 are irrelevant
so that y1 = y¢, yo =y, > 0 and y; < O for ¢ > 2.
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Hyperscaling

® Setting u; =t and up = h = 0 into the generalized homogeneous relation for the correlation

length & gives
£(t,0) = b"&£(b"1¢,0)
where here and in the sequel we omit irrelevant fields.
Choosing b" = [t|~1/¥1 gives
£(t,0) = |~ VMEL0) ~ [, v = —
® Similarly, setting h =0 and uo, = 0 gives

Wo(t) = (t,0) = b= p("™1t, 0) = b~ Wapg (b™¥11)

and

Yo (8) = b2 g (5"1)

Choosing b" = [t|~1/¥1 gives
Co ~ 4g(1) = [t~V yig(£1) ~ |t~

with the hyperscaling relation

d
2—a=—=dy, Yi — Yt
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Gap Exponent and Universal Scaling Forms

® Similarly, setting w1 =t and uo = h into the generalized homogeneous relation for the free
energy v gives

1
W(t, h) = b~ (bWLL, b™2R) = Xw(xyl/dt, AV2/dp), A = bin
SO

m(t, h) = g—;f(t, h) = p(v2—d) Z—Z(b”ylt, b"Y2h)

® Setting h = 0 and choosing b" = (—t)—l/yl with ¢t < 0 so that T < 1, gives

O (d— oY d—y, 1-%
t) ~ —(¢,0) = (—t)(@=¥2)/v1 ZX(_1 0) ~ (=2t)P, — — d
mo(t) ~ - (t,0) = (=) 5 (=1,0) ~ (=) B=— o
oY .
where %(t, 0)=0 for t >0, that is, T > T..
® Note also that by setting b" = |t|_1/y1 we obtain universal scaling forms asymptotically

close to the critical point

m(th) = (—t)PM_ (#)

where A = yo/y1 = yp/y: is called the gap exponent and the scaling functions Fy, M_ are
functions of a single variable.
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Migdal-Kadanoff Bond Moving Approximation

® An approximate renormalization group transformation can be implemented by Migdal-
Kadanoff bond moving. Consider the square lattice Ising model with nearest-neighbour
interactions along the bonds of the lattice with periodic boundary conditions. The Migdal-
Kadanoff bond moving approximation for b = d = 2 on the square lattice is implemented
graphically:

}(/
@ @ @ @ L ] ® @ @ @ ® ® ® ® @ @ /O
K 2K 2K K
@ @ @ @ L ] [ @ @ @ @ ([ C & & ®
K K 2K

® The algorithm is as follows:

(i) Group the faces into blocks of 2 x 2 faces.

(ii) Within each 2 x 2 block, move the internal bonds by parallel translation to the perimeter
of the block. This rescales the original lattice to a square lattice with rescaling factor b = 2.

(iii) In this way, the original bonds are replaced with double bonds with an extra spin in the
center of each double bond.

(iv) Decimate (sum out) the extra spins so that the interaction 2K is replaced by K’.

2-11



Migdal-Kadanoff Decimation and RG Equation

® The extra spins at the centers of the double bonds can be decimated (summed out) using
the identity

K’ 2K 2K
= e °

® o = )
01 02 01 o g2

N K'o100 — S e2Ko(01402) — 2 cosh[2K (07 + 05)] = 2 cosh[2K (1 + 0105)]
o==1

which is equivalent to the equations

A" = 2 cosh 4K, Ae K =2
® [t follows that

2K = cosh 4K = %(e“{ + 4K
and

/
2K 1 4K + e~ 4K _ 9 B (€2K _ 8—2K)2

2K 11 4K J 4K L 2 (2K J ¢—2K)2

tanh K/ = — tanh? 2K

® The transcendental Migdal-Kadanoff RG equation is thus

K' = arctanh(tanh?2K)
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Graphical Solution of Migdal-Kadanoff RG Equation

® The Migdal-Kadanoff RG equation K’ = arctanh(tanh2 2K) can be solved graphically and
numerically. There is an unstable fixed point at K* = 0.3047. This is to be compared with
the exact critical point given by

K* = %1og(1 4 v2) = 0.4407

® Starting near K = K* and iterating graphically gives:

A
K’ = arctanh(tanh? 2K)
K =K
< L > >
0 K* K
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Migdal Kadanoff Linearization with Arbitrary b6 and d = 2

® For arbitrary b > 1 and d = 2, the RG equation is

tanh K’ = tanh®(bK), tanh K* = tanh®(bK™)
: - . dK’ .
® Linearizing gives Ly, = — with
dK | K*

/

dK
sech? K/ﬁ = b2 tanh?~1(bK) sech?(bK)

so that
b2tanh K*sech?(bK*) b2sinh2K*
/:,b p— 5 s - p— /\1 p— byl
sech< K*tanh(bK*) sinh 2bK*
since
tanh K* 1

5 :sinhK*coshK*_jsinhQK*
sech< K*

® For arbitrary b > 1 and d, the RG equation becomes

tanh K’ = tanh®?(3% 1K), tanh K* = tanh?(b¢1 K*)

® Given b and d, the solution is obtained by solving for K*, A1 and yy in that order. The

correlation exponent v is then given by hyperscaling

2 — « 1

Vv = — —

d Y1
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Migdal Kadanoff Results for d = 2

® For b =2, we find

K*=0.3047, A;=1679, y;=0.7472, v =1.338

compared with the exact results

I
=

K* = K. = 0.4407, y1 = 1, v

® The renormalization group flow equations make sense for b > 1 non-integer. If we consider
the limit b — 14, we find

K* = K. = 0.4407, y1 = 0.754, v =1.32

T hese values are better than the b = 2 values and are reasonable estimates given the crudeness
of the approximation.
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Migdal-Kadanoff in a Magnetic Field

® [t is also possible to include a magnetic field into the Migdal-Kadanoff RG flow equations.
We just need to attach a weight B/4 to each site at the ends of the bonds that we move.

® On the square lattice, this leads to the modified decimation

B’ B’ 2B 2B
- K = ¢ 2K B 2K =
® ® = ® ® ®
01 (0k9) 01 o (0k9)
AeK/0102+B/(01—|—02)/4 — Z eQKJ(Jl—|—02)—|—BU—|—B(01—|—02)/2
o==1

= B(o1402)/2 5 cosh[2K (01 + 05) + B]

or equivalently

AeK'tB/2 = 5 cosh(4K + B) B, AeK'=B'/2 — 2 cosh(4K — B) e P, Ae K" = 2cosh B

® Hence
cosh(4K + B)cosh(4K — B
A — (4K + B) - ( p— 4K + O(B?)
cosh< B
B >g COsh(4K + B) 2
— =1 2+ 2tanh4K)B + O(B
e ™ osh(aK — B) + 2+ )B + O(B~)
which on linearization vields
OK' 4sinh2K* 2 oK' OB’
= = = N\1q, =0, =24 2tanh4K™* = A,

OK ~ sinh4K*  cosh2K* OB OB |(x* 0)
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Linearized Migdal-Kadanoff in a Magnetic Field

® In a magnetic field, there is an unstable fixed point at (K, B) = (K*,0) with K* as before.

OK' 9B’ A
Ly = 0K 0K — 1 0*
0O Ao
(K*,0)

OK' OB’
A1 = bY1 = 1.679, y1 = 0.754

® We find

oB 0B
and with b =2

as before and

Ci__
Ao = bY2 = 3.679, yo = 1.879, F=2"92_0162

Y1

whereas the exact values are

15 1 15
y2:§:1.875, 5:§20,125, A= _=°

Y1 3

® It has not been shown that an RG transformation with all the required properties actually
exists. In fact the usual (real-space) transformations seem to exhibit unwanted peculiarities
(Griffiths and Pearce 1978). In practice, there is no way of estimating the accuracy of an
approximate transformation and no systematic way to improve the results. In fact, attempts
in this direction usually end up giving worse results.
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10: Simple and Random Walks

28. One-dimensional random walk
29. Walks on graphs and hypercubic lattices
30. Return probability and Polya’s theorem

George Polya (1887—1985)

Photographs (© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)



Simple One-Dimensional Walk

® Consider simple walks on an infinite one-dimensional lattice starting at the origin O:

® ® ® ® o ® ®
-3 -2 -1 0 1 2 3

® T hese walks can be enumerated symbolically. At each step, there is either a step to the
right represented by z or a step to the left represented by »~1 where z is a formal parameter.
The set of 1-step walks can be represented by the Laurent polynomial
—1
z 4+ z

Similarly, the set of four 2-step walks is enumerated as

P e R e (z 4+ 2_1)2 — 22424 52

® More generally, the set of 2™ n-step walks can be expanded as the generating function

n

(z42z"Hn = > w, (k) 2F
k=—n mod 2
where
wp (k) = (l(nn_ k)) = {number of distinct n-step walks from the origin 0 to k}
2

® In accord with the binomial expansion, setting z = 1 counts the total number of n step
walks

2" = (1 + 1)n — Z (l(nn_ k))
2

k=—n
k=n mod 2
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Generating Function for All Walks

® The generating function can be inverted to find wy,(k), the number of distinct n-step walks

from O to k.
® Write z = €' and observe that

— [ dpe*? = §(k,0) = {7 0 | keZ
27 JO 0, otherwise

® Acting on the left and right hand sides of the generating function for (z 4+ z—1)™ with

2T .
0 do e~ k% and using z + z—1 = 2Cc0os¢ and the above identity gives
1 21 :
wn(k) = — | dpe *?(2cos p)”
27 JO

® It follows that the generating function for all walks (of arbitrary length) from 0 to k is

oo

r(k; e = L [Fag_ "
(kiz) = ;::O’wn( )z = E/o gb1—2zcos¢

where we used the geometric series which is valid provided 2|z| < 1.
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Simple Walks on Finite Graphs

® A one-dimensional chain and other lattices are particular examples of graphs. It is possible
to enumerate walks on arbitrary graphs. Consider a walk on an oriented (or non-oriented)
finite graph G specified by an adjacency matrix A with entriesAij

4 3 01 0 1
G = m Aij:{# 1-step paths from ¢ to j} A = Cl) (1) Cl) Cl)
1 2 01 00

® From the definition of matrix product, it follows that

(A™);; = {number of distinct n-step paths from i to j}

® Assume that A is diagonalizable which is the case if A is real symmetric or A has distinct
eigenvalues. The generating function of all walks (in an arbitrary number of steps) from ¢ to
j on the graph G, for maxg [zAL] < 1, is then

Fii—gi2) = 3 wa(i = )" = 3 (AMye" = [T - 2A) "]y = COfZSc(z;ji_(Iz;)ZA)

® Suppose further that the graph is regular in the sense that all N nodes of the graph are
equivalent. Then the generating function for all returning walks (of an arbitrary number of
steps) from a particular node of the graph ¢ back to 7 is

M= i 2) = — %[(I—zA)_l]-- =l a)yl=2 f; (1— 20)" L
’ —Nz'zl ZZ_N —Nk:1 k

where A\, k= 1,2,..., N are the eigenvalues of the adjacency matrix A of G.
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Simple Walks on a Periodic Chain

® For a (regular) finite periodic chain, the adjacency matrix A is cyclic and symmetric

010 -+ 01
N 1617000
G =1 A = 01000 = N X N matrix
000 -+ 01
2 . \100---10)

® The eigenvalue equations are cyclic finite difference equations
Ax = d\x, Tp_1 + Tp41 = Azy, T4 N = Tk, k=1,2,...,N
To solve this, try 2 = z*. Then
A=z+z 1 sny=z" =Xr1—zo=z(z+z ) —2°=1

2mi /N

in accord with cyclicity x4y = 2" TN = 2F2N = 2% = 2. Choosing z =e gives

: 27k
:ck:eQWZk/N, Ak:QCOSL, k=1,2,...,N
N

® The generating function for all returning walks (of an arbitrary number of steps) from 1

to 7 on a periodic chain is thus

N
1 1 2m d
> — / ¢ N — 0o

1
N /=1 1—2zcos 2%k 2w Jo 1—2zCOS¢’

F(i—1,2z) =

and we recover the previous result for an infinite one-dimensional chain.
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Random Walks on Hypercubic Lattices

® Simple walks on a one-dimensional lattice are straightforwardly generalized to d-dimensional
hypercubic lattices. The nodes of a hypercubic lattice are given by lattice (integer) vectors

k= (ki,ko,... kg) €Z°

® On a hypercubic lattice, the generating function for all walks (of arbitrary length) from 0
to k is

1 )d 27 27 6_2k¢

(k=) 27/ Jo 2 0 ¢d1—2zzg:1cos¢n

where ¢ = (é1, 92, .-, 9q)-

® Consider a random walk on a hypercubic lattice, such that, each step of the walk has
probability p. Then the probability that an n-step walk starting at the origin O will lead to k
IS given by

pn(k) = wn(k)p"

and the generating function for these probabilities is

oo

P(k;z) = ) pu(k)z" = ) wp(k)p™z" =T (k;pz)
n=0

n=0

® In this way, all such formulas for random walks are obtained from the corresponding
formulas for simple walks by replacing z with pz.
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Probability of First Return

® The probability that an n-step walk returns to the origin after exactly n steps is

pn = pn(0) = {probability that a walk returns to the origin after n steps}

However, this may not be the first time that the walk has returned to the origin. Let

n = {probability that a walk returns to the origin for the first time after n steps}

Then f, and py, are related by the recursion

pn = f1Pn—1 + fopn—2 + -+ fnbo

@)
® Acting on this by Z 2" and using the Cauchy product gives the relation

n=1

P(z) —1=F(2)P(z)

between the generating functions

P(z) = P(0;2) = )  pnz", F(z) =) faz"

n=0 n=1
® It follows that
1

P(z)
and the probability R of returning to the origin is given by

e B .1 1, P(1) = oo
R—n;fn—F(l)—l {<1, P(1) < oo

F(z) =1 -

P(1)
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Polya’s T heorem

® If the steps of a random walk on a d-dimensional hypercubic lattice are equally probable

2d

1 . . 1\d /27 27 > d —1
= P(z)—P(o,z>—(g) Ty | dqsd[l—gn;cosqsn]

® The integrand of P(z) with z = 1 only diverges in the limit

r:¢:(¢17¢27“'7¢d)_>07 z=1
1 4 1 d s 1 d ; 72
1 —— COS ~ 1—— l—5 N o— = —
d 2_:1 o d 2_:1( 200) ~ 3 2_:1 n = 2
n=— n=— n=
Setting » = |r| and using dV ~ rd=1ldr, the behaviour of the integral for P(1) is given by

e =2 d=1
dV e pd—1 / rd=3dr = [T ] — 1%
/d¢[...]—1N/| N/ dr = 10 i—2lp )<oo, d>3

r|<e r2 0 72 € dr

Theorem 1 (Polya’s Theorem) The probability of return to the origin for a random walk
on a d-dimensional hypercubic lattice is

1 =
L[t d=1,2
<1, d>3

The walk is called recurrent if d = 1,2 (the walk returns to the origin with probability 1).
For d > 3, the walk is transient (not guaranteed to return to the origin).
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Mean-Square Displacement

® Consider a random walk on an infinite one-dimensional chain. For a given walk, let

Ry, = {displacement after n steps}

Since wp(k) = wn(—k), the mean displacement over all n-step walks vanishes
n n
(Ro)= 3. kpn(k) = 3 kwn(k)p" =0
k=—n k=-—n

® To measure the average extent of the walk we use the mean square displacement

82 ~ ~ n 3o
—8752[%(@] L Ba@) = Y R pa(k)

mn
(R2) = Y Kk?pp(k) =
k=-—n ¢=0 k=-—n

® Here pn(¢) is the coefficient of 2™ in the Fourier transform

n

P(¢) = ) 2"pn(e) = ) 2" ), e*Ppn (k) = > ()" wn (k) e*®
n=0 n=0 k=-n n=0

k=—n
— n(tP AN — < —
D@ = s By

since, with z replaced by e'?,
mn

(47 = 3 wp(k)e™?

k=-—n
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Lattice Structure Factor

® It follows that

(Rn) = coz%ﬂ’{ B 68; [1 — 2p1z cos qﬁ] ¢=O} B Coﬁff{ - 387522 [(sz)” cos” (b] ¢=0}
— (zp)”{ — 087522[1 —ing? + - ] _ } = n(2p)"

1

® In particular, for equally probable steps, p = 5 and the root mean square displacement is

V(RD) = v

in accord with the central limit theorem.

® More generally, the mean square displacement is given by

H2
(B2 = —n g 2 M)y = XK1 ()

where

ANo) = Zeik'¢p1(k) — {lattice structure factor}
k

1
21

M) = 5(e' + ) = cos¢

For a walk on a square lattice

For a simple one-dimensional walk with p1(k) =

A(p) = 5(cos ¢p1 + cos ¢p)
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11: Percolation

Bond and site percolation
Percolation in one dimension
Percolation on Bethe lattice

John Michael Hammersley (1920—2004) Renfrey Burnard Potts (1925—2005)
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Bond and Site Percolation

® Percolation theory deals with the statistical behaviour of connected clusters in a random
graph. Consider an infinite square lattice and suppose 0 <p < 1.

[ ]

® In site percolation (left), the sites (vertices of the lattice) are occupied randomly (and
independently) with probability p. In this case, two occupied sites at opposite ends of the
same bond of the lattice are considered to be in the same (connected) cluster, that is, the
clusters consist of all sites mutually connected through bonds of the square lattice.

® In bond percolation (right), the bonds (edges of the lattices) are occupied randomly (and
independently) with probability p. Two occupied bonds incident to the same site of the
lattice are considered to be in the same (connected) cluster, that is, the clusters consist of
the connected occupied bonds and the sites at their endpoints.

® Bond and site percolation on the same lattice are generally distinct statistical systems.
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Percolation Threshold

® In both site and bond percolation, for small values of p, only small clusters are formed. As
p increases, the size of the clusters grow. At a critical probability p. (percolation threshold),
there appears an infinite cluster. As p increases further, the clusters continue to grow until
the whole lattice is filled with a single cluster.

® Mathematically, the percolation threshold is defined by

pc = inf {p . Pr{bond/site j belongs to an infinite cluster} > O}

= sup{p . {mean size of the cluster containing j} < oo}

® T he probability of a site 5 belonging to an infinite cluster is zero in the low density phase
(p < pc). In this phase, the mean cluster size is finite. In the high-density phase (p > pc), the
probability of a site 5 belonging to an infinite cluster is strictly positive and the mean cluster
size is infinite. Note that, at the critical percolation threshold (p = p.), there is no infinite
cluster for d > 2.

® The percolation thresholds on the square/triangular lattices are

1 o
sq _ )2 bond i | 0-347296355... = 2sin {57, bond
Pe = - Pe =11 |
0.592746 ..., site > site

® Critical bond percolation on the square lattice and critical site percolation on the triangular
lattice can be solved exactly! This is the subject of current research.
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Percolation in One-Dimension

® Consider percolation on an infinite one-dimensional lattice with the origin at O:

° ° ® ° ® ® ®
-3 -2 -1 O 1 2 3

On this one-dimensional lattice, bond and site percolation are equivalent so let us use the

terminology of site percolation.

® Sclect a site, say the origin 0. The probability that this site belongs to a cluster of exactly
n sites is

Po(p) =1 —p, Pn(p) = n(1 — p)?p", n>1

since a linear cluster of n > 1 occupied sites must terminate with empty sites at each end.
The factor n arises since the origin can occur at any position 1 to n along the linear cluster.

® The probability that the origin O belongs to an infinite cluster (the percolation probability)
vanishes in one dimension

I
S

|
VN
|—l

|
3

N
S

| =
N\
I
S

S
N——

Poo(p) = 1 — ioj Ph(p)
n=0

Hence p. = 1 and there is no high-density phase.
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Mean Size of Finite Clusters

@)
® Since Z Pn(p) = 1, the mean size of finite size clusters containing the origin is

n=0
o — - . _ 3 2200 — (1 o2p % (8 — n
(n) ;::O Pn(p) = (1 —p) ;::O p" =(1—p)p pm (p pm ;::Op )
1 N2 dd 1 _ 1 N2 d p p(1 +p) N
= (1 -p) pdp<pdp1—p> = (1-p) pdp((l—p)2> 1—»p <6% P

® Percolation in one dimension is similar to a phase transition at zero temperature. There
IS only one phase and consequently no phase transition at p <1 = p.. There is only a phase
transition in the Ilimit p — p. = 1.

® \We can define critical exponents for this one-sided phase transition. In particular, the
critical exponent ~ associated with the divergence of the mean cluster size is given by

(n) ~ (pc —p)~ 7, P — Pe—, v=1
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Bethe Lattice

® Bethe Ilattice with coordination
number z = 3. The central (root)
site is labelled O. The consecutive
surrounding shells are labelled by
kEk=1,2,3.

® The Bethe lattice is a connected
cycle-free graph (tree) where each
node is connected to 2z neighbours
where z is the coordination number.
T he sites are all equivalent.

® Choosing a central (root) site,
all the other sites are arranged in
consecutive shells with N sites in
shell &

N, = 2(z — 1)1, k=12, ...
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Site Percolation on Bethe Lattice

® Due to the special properties of the Bethe lattice or Cayley tree, statistical systems on this
lattice are often exactly solvable and these solutions are related to the Bethe approximation.
For z = 2, the Bethe lattice reduces to the one-dimensional chain. For this reason, we are
primarily interested in z > 3.

® \We will obtain a mean-field theory of percolation, which exhibits a phase transition for
pe < 1, by solving site percolation on the Bethe lattice. The Bethe lattice is not a sensible
physical lattice since a finite fraction of the number of sites sits on the boundary (outer
shell). In this sense, the lattice has similar properties to the complete graph of the equivalent
neighbour model.

® On the Bethe lattice, a cluster of n occupied sites is bounded by n(z —2) + 2 vacant sites.
This is established first for linear clusters and extended to branched clusters by joining linear
clusters. Hence the probability that the origin O belongs to a cluster of n sites is

Po(p) =1 —p, Pu(p) = cnp™(1 — p)z=2)+2 n>1

where ¢, iIs the number of possible n-site clusters that contain the origin O.

® Hence, for p < pe, when there are no infinite clusters

1-p+ io: Pn(p) = 1, Pso(p) =0

n=1

This states that, in this case, either the origin is not occupied or it belongs to a finite cluster.
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Mean Size of Finite Clusters for p < pe

@ Forp<pc

@)

. _ )F 21N — p
ngl nlp(1 —p)* 7] 1—p)?

Differentiating with respect to p gives

I N ST T
n=1

p(1 —p)*=2dp ~ dpl(1 —p)2

® Taking the ratio of the last relations yields

(n) F 2—2]_[ 1 n 2p ]
(1-p)?lp 1-p (1-p)2 (1-p)3
so that the mean size of finite clusters is
p(1 + p) 1
o ; < o
(n) 1—(z—1)p P < Pc .1

® As in one dimension, the critical exponent ~ associated with the divergence of the mean
cluster size is given by

(n) ~ (pc —p)~ 7, P — Pe—, vy=1

® If z = 2, the critical probability is p. = 1 and these results agree with those of the one-
dimensional lattice.
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Percolation Mean-Field Equation

® We want to calculate the percolation probability, that is, the probability Px(p) that the
origin O belongs to an infinite cluster.

® Let Q(p) > 0 be the probability that a given branch growing from an occupied site j fails
to extend to infinity. Then the mean-field equation for Q(p) is

SN

Qp) =1 —-p)+pQR(P)*1t<1
® Since this has the trivial solution Q(p) = 1, it factorizes as

(@) = 1)(PRM 2 +pQ(P)* >+ - +pQ(P) +p—-1) =0

® For a solution Q(p) # 1, that is, Q(p) < 1 we must have

z—2 .
pY Q=1

7=0

If Q(p) < 1, we see that LHS < p(z — 1) <1 = RHS for p < p. = -1;. It follows that there
are no solutions with Q(p) < 1, in this range, and so the unique solution is Q(p) = 1. If

p > pc = ~=5, then there is a unique solution, with 0 < Q(p) < 1, such that Q(p) — 0 as p — 1

and Q(p) — 1 as p — pc = ;7. This is the physically relevant solution for 25 =p. < p < 1.
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Bethe Percolation Probability for z = 2,3

® Given the solution Q(p) of the mean-field equation, the required percolation probability is

Po(p) =1—-(1-p) —pQ(»)* =p[1 —Q{)], z leaves

® For z = 2, we have p. = 1 and only the trivial solution Q(p) = 1 giving P~ (p) = 0 in accord

with the one-dimensional solution.
high-density solution for

® For z =3,

which implies Ps(p) = 0 for p < p. = 4 and for p > pc = 5

1

Q(p) = {

1—p
p b}

For z > 3, the mean-field equation admits a non-trivial
—1 =Pc<p<1

p >
p <

NI~ N

1

(1-p)31 _ (@p—-1)(p?-p+1)
Poo(p) = p|1 - | = . ~6(p—1)F poly, =1
p p
Poo(p) o' ® Percolation probability on the Bethe lattice
, with coordination number z = 3.
: ® The critical point is at p. = % For p >%
A there is a positive probability of finding an
i infinite (percolating) cluster.
0.0 ° P
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Bethe Critical Exponent g for z > 3

® More generally, for p > pe., Q(p) and Px(p) are differentiable functions of p. So
differentiating the equation

z—2 j 1
Z Qp) = ;

j=0
and using the fact that Q(p) — 1 as p — pc.+ gives

N —1 L 2(z-1)2  2(2-1)
R T T S CR ) ) R ) R

® Since Px(pc) = 0, it follows that

Pl(0) =1 - Q)" — pzQ(»)* Q' (p) - —— [ e 1)] =

_ — : —
z—1 (z —2) z—2 P pet

® Expanding P~ (p) in a Taylor series out to linear order for z > 3 gives

Pso(p) ~ (p — pe)”, =1

where the associated critical exponent B is a second independent critical exponent.
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Percolation and the Potts Model

® Percolation is related to the ¢ — 1 limit of the g-state Potts model with Hamiltonian

Formally,

H:—JZ5(O'7;,O']’), o; =1,2,...,q
(4,9)
Percolation = Iiml{q—state Potts model}
q—

® Mathematically, this requires a suitable analytic continuation of the g-state Potts model to
arbitrary (non-integer) values of g. This can be done using the (stochastic) Fortuin-Kasteleyn
interpretation of the ¢-state Potts model.

® This identification enables a correspondence of thermodynamic functions and associated
critical exponents:

Thermodynamic Function Potts Percolation EXxponent
deviation from criticality T D
free energy Ww(T) Y(p) 2 —
order parameter <(5(a-, 1) — %> Pso(p) B
susceptibility xo(T) (n) ~
> 1
Y(p) = ) = Pu(p) = {mean number of clusters per lattice site}
n=1"

(n) = {mean size of finite clusters}
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Percolation Critical Exponents

® From scaling principles, the critical exponents should satisfy the relations

a+28+v=2, vy=pB(6-1)

® T he two-dimensional site percolation problem has not been solved exactly. However, bond
percolation in two dimensions (which is believed to be in the same universality class as site

percolation) is exactly solvable at the critical point p = p, = %

® T he values for the critical exponents of percolation in various dimensions are:

d o 5 g
d=1 1 0 1
d=2 —2/3 5/36 43/18
d=3 ~—-06 ~04 ~1.8
d = o0 —1 1 1

® The d = oo values correspond to the mean-field Bethe lattice values. These values hold
for d > 6. So the upper critical dimension for percolation is d = 6 for percolation compared
to d = 4 for the Ising ferromagnet.

® Critical bond percolation on the square lattice is exactly solvable. Details can be found
in A. Morin-Duchesne, A. Klumper, P.A. Pearce, Conformal partition functions of critical
percolation from D3 Thermodynamic Bethe Ansatz equations, arXiv2017.
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