

Nanomechanical Quantum Sensors

Junho Suh

Korea Research Institute of Standards and Science

KRISS 한국표준과학연구원 Korea Research Institute of Standards and Science

Quantum vs. Classical

* "Decoherence and the Transition from Quantum to Classical" by Wojciech H. Zurek

How to Use Quantum Mechanics?

* "Decoherence and the Transition from Quantum to Classical" by Wojciech H. Zurek

Quantum technology: the second quantum revolution

Jonathan P. Dowling and Gerard J. Milburn

Published: 20 June 2003 https://doi.org/10.1098/rsta.2003.1227

Abstract

We are currently in the midst of a *second quantum revolution* The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology. "superposition" and "entanglement"

Quantum Technologies

* Quantum Technologies Flagship Intermediate Report (2017).

Quantum sensing

C. L. Degen

Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland

F. Reinhard^{*}

Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany

P. Cappellaro[‡]

Research Laboratory of Electronics and Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

(published 25 July 2017)

"Quantum sensing" describes the use of a quantum system, quantum properties, or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors

Quantum Sensing

- (I) Use of a quantum object to measure a physical quantity (classical or quantum). The quantum object is characterized by quantized energy levels. Specific examples include electronic, magnetic or vibrational states of superconducting or spin qubits, neutral atoms, or trapped ions.
- (II) Use of quantum coherence (i.e., wavelike spatial or temporal superposition states) to measure a physical quantity.
- (III) Use of quantum entanglement to improve the sensitivity or precision of a measurement, beyond what is possible classically.

* C. L. Degen et.al, "Quantum sensing", Rev. Mod. Phys. 89, 035002 (2017).

Quautum Sensing

Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency	Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency
Neutral atoms				Superconducting circuits	5		
Atomic vapor	Atomic spin	Magnetic field, rotation, time/frequency	dc-GHz	SQUID ^c Flux aubit	Supercurrent Circulating currents	Magnetic field Magnetic field	dc-GHz dc-GHz
Cold clouds	Atomic spin	Magnetic field, acceleration.	dc-GHz	Charge qubit	Charge eigenstates	Electric field	de-GHz
		time/frequency		Elementary particles Muon	Muonic spin	Magnetic field	dc
Trapped ion(s)						C	
	Long-lived electronic state	Time/frequency Rotation	THz	Neutron	Nuclear spin	Magnetic field,	de
	Vibrational mode	Electric field, force	MHz			gravity	
Rydberg atoms				Other sensors			
	Rydberg states	Electric field	dc, GHz	SET ^d	Charge eigenstates	Electric field	dc-MHz
Solid-state spins (ens	embles)			Optomechanics	Phonons	Force, acceleration,	kHz–GHz
NMR sensors NV^{b} center	Nuclear spins	Magnetic field	dc dc-GHz	Electromechanics		mass, magnetic field, voltage	
ensembles	Election spins	electric field, temperature, pressure, rotation		Interferometer	Photons, (atoms, molecules)	Displacement, refractive index	

* C. L. Degen et.al, "Quantum sensing", Rev. Mod. Phys. 89, 035002 (2017).

(Nano) Mechanical Sensors

(Nano) Mechanical Sensors

* Kurizki *et.al, PNAS* **112**, 3866 (2015).

Example: Nano-Beam Resonators

Eigenmode of vibration = Harmonic oscillator

MHz ~ GHz

Euler-Bernulli Equation

Equation of Motion

$$EI\frac{\partial^4 U(y,t)}{\partial y^4} + \rho A\frac{\partial^2 U(y,t)}{\partial t^2} = f(y,t)$$

• Separation of variables; normal modes $\varphi_n(y)$

$$U(y,t) = \sum \varphi_n(y)q_n(t)$$

• Consider homogeneous case, i.e. f(y, t) = 0

$$\frac{\partial^4 \varphi_n(y)}{\partial y^4} - \beta_n^4 \varphi_n(y) = 0; \ \frac{\partial^2 q_n(t)}{\partial t^2} + \omega_n^2 q_n(t) = 0; \\ \beta_n^4 = \frac{\rho_A}{EI} \omega_n^2$$

Integrate Euler-Bernulli equation

$$m_n \ddot{q_n} + k_n q_n = \int_0^l f(y,t) \,\varphi_n(y) dy; \ m_n = \rho A l \int_0^l (\varphi_n(y))^2 dy; \ k_n = \frac{EI}{l^3} \int_0^l (\partial^2 \varphi_n(y) / \partial y^2)^2 dy$$

Equation of Motion

• For the fundamental mode shape $\varphi_0(y)$, the displacement u(t) at $y = y_0$ under uniformly distributed force f(t) satisfies, (F(t) = total force)

$$m_{eff}\ddot{u} + k_{eff}u = F(t)$$

$$m_{eff} = \frac{\rho A l \int_0^l (\varphi_0(y))^2 dy}{\varphi_0(y_0) \int_0^l \varphi_0(y) dy}; k_{eff} = \frac{\frac{E I}{l^3} \int_0^l (\partial^2 \varphi_n(y) / \partial y^2)^2 dy}{\varphi_0(y_0) \int_0^l \varphi_0(y) dy}$$

• Damping can be included:

$$m_{eff}\ddot{u} + m_{eff}\gamma\dot{u} + k_{eff}u = F(t)$$

• In frequency domain:

$$u(\omega) = \frac{F(\omega)/m_{eff}}{(\omega_0^2 - \omega^2) + i\frac{\omega\omega_0}{Q}}; Q = \frac{\omega_0}{\gamma}$$

Example of Nano-Beam

• Fixed ends + zero-slope at the ends

$$\omega_n = a_n \sqrt{\frac{E}{\rho} \frac{t}{l^2}} (a_n = 6.47, 17.9, 35.0, \dots)$$
* Foundation

Center of mass displacement: x(t)

$$m_{eff}\ddot{x} + m_{eff}\gamma\dot{x} + k_{eff}x = f(t)$$

with
$$f(t) = F(\omega)e^{i\omega t}$$
, $x(t) = X(\omega)e^{i\omega t}$:
 $X(\omega) \cong \frac{F(\omega)/(m_{eff}\omega_0)}{2(\omega_0 - \omega) + i\gamma}$
 $(\omega \approx \omega_0 = \sqrt{\frac{k_{eff}}{m_{eff}}} \gg \gamma)$

 \Rightarrow Maximum amplitude ("resonance") when $f(t) = F \cos \omega_0 t$

$$x(t) = X \sin \omega_0 t = \frac{F \cdot \frac{\omega_0}{\gamma}}{k_{eff}} \sin \omega_0 t = \frac{F \cdot Q}{k_{eff}} \sin \omega_0 t$$

$$x(t) = X\sin\omega_0 t = \frac{F \cdot \frac{\omega_0}{\gamma}}{k_{eff}}\sin\omega_0 t = \frac{F \cdot Q}{k_{eff}}\sin\omega_0 t$$

May. 19. 2022

 ω_0

Center of mass displacement: x(t)

$$m_{eff}\ddot{x} + m_{eff}\gamma\dot{x} + k_{eff}x = f(t)$$

with
$$f(t) = F(\omega)e^{i\omega t}$$
, $x(t) = X(\omega)e^{i\omega t}$
 $X(\omega) \cong \frac{F(\omega)/(m_{eff}\omega_0)}{2(\omega_0 - \omega) + i\gamma}$
 $(\omega \approx \omega_0 = \sqrt{\frac{k_{eff}}{m_{eff}}} \gg \gamma)$

 \Rightarrow Maximum amplitude ("resonance") when $f(t) = F \cos \omega_0 t$

$$x(t) = X\sin\omega_0 t = \frac{F \cdot \frac{\omega_0}{\gamma}}{k_{eff}}\sin\omega_0 t = \frac{F \cdot Q}{k_{eff}}\sin\omega_0 t$$

1) Force vs displacement

$$\delta X = \delta F \frac{\omega_0 / \gamma}{k_{eff}} = \delta F \frac{Q}{k_{eff}}$$

2) Resonance vs mass/spring constant

$$\delta\omega_{0} = \delta m_{eff} \frac{\omega_{0}}{2m_{eff}} \text{ or } \delta k_{eff} \frac{\omega_{0}}{2k_{eff}}$$

Center of mass displacement: x(t)

$$m_{eff}\ddot{x} + m_{eff}\gamma\dot{x} + k_{eff}x = f(t)$$

with
$$f(t) = F(\omega)e^{i\omega t}$$
, $x(t) = X(\omega)e^{i\omega t}$
 $X(\omega) \cong \frac{F(\omega)/(m_{eff}\omega_0)}{2(\omega_0 - \omega) + i\gamma}$
 $(\omega \approx \omega_0 = \sqrt{\frac{k_{eff}}{m_{eff}}} \gg \gamma)$

 \Rightarrow Maximum amplitude ("resonance"):

$$f(t) = F \cos \omega_0 t; \ x(t) = X \sin \omega_0 t = \frac{F_0 \cdot \frac{\omega_0}{\gamma}}{k_{eff}} \sin \omega_0 t$$

$$\delta X = \delta F \frac{Q}{k_{eff}}$$

- \Rightarrow Maximum sensitivity in force measurement requires:
- 1) High Q (i.e. low dissipation)
- 2) High compliance (i.e. small mass)
- 3) Low measurement noise in δX (i.e. quantum-limited)

Quantum limit

 $|\hbar\omega > k_B T|$ or

(zero-point energy overcomes thermal energy)

Quantum limit

$\hbar\omega > k_B T$

- Speed of sound ~ 10^4 m/s
- Device temperature ~ 50 mK
- $k_B T \sim 4 \mu eV$ or 1 GHz
- \therefore device length scale
- ~ (10⁴ m/s) / (1 GHz) = **<u>100 nm</u>**

Single phonon vs single photon

	phonon	photon
medium	solid	vacuum
nonlinearity	high	low
mass	m _{eff}	zero
wavelength	Sub-micron	Micron or centimeter
Electric charge/dipole	possible	no
Magnetic dipole	possible	no

Mechanical quantum sensor

$\hbar \omega > k_B T$

- How to generate?
- How to apply them in sensing?
- How to hybrid with other quantum system?

* LaHaye, **JS** et.al, "Nanomechanical measurements of a superconducting qubit", Nature **459**, 960 (2009).

* LaHaye, **JS** et.al, "Nanomechanical measurements of a superconducting qubit", Nature **459**, 960 (2009).

* LaHaye, **JS** et.al, "Nanomechanical measurements of a superconducting qubit", Nature **459**, 960 (2009).

* LaHaye, JS et.al, "Nanomechanical measurements of a superconducting qubit", Nature 459, 960 (2009).

$$\hat{H} = \hbar \omega_{\rm NR} \hat{a}^{\dagger} \hat{a} + \frac{\Delta E}{2} \hat{\sigma}_z + \hbar \lambda (\hat{a} + \hat{a}^{\dagger}) \left(\frac{E_{\rm el}}{\Delta E} \hat{\sigma}_z - \frac{E_{\rm J}}{\Delta E} \hat{\sigma}_x \right)$$

 $\hbar |\lambda| \langle \hat{a}^{\dagger} \hat{a} \rangle \ll |\Delta E - \hbar \omega_{\rm NR}|$ (dispersive coupling limit)

$$\frac{\Delta\omega_{\rm NR}}{2\pi} = \frac{\hbar\lambda^2}{\pi} \frac{E_{\rm J}^2}{\Delta E(\Delta E^2 - (\hbar\omega_{\rm NR})^2)} \langle \hat{\sigma}_z \rangle$$

* LaHaye, **JS** et.al, "Nanomechanical measurements of a superconducting qubit", Nature **459**, 960 (2009).

Nanomechanical probe of quantum coherence

"Landau-Zener Interference"

* LaHaye, **JS** et.al, "Nanomechanical measurements of a superconducting qubit", Nature **459**, 960 (2009).

Quantum tomography of mechanical phonon

* Satzinger et.al, "Quantum control of surface acoustic-wave phonons", Nature 563, 661 (2018).

Example 2: Quantum optomechanical system

Mechanical oscillator coupled to photons

$$\widehat{H} = \hbar \omega_c \widehat{a}^{\dagger} \widehat{a} + \hbar \omega_m \widehat{b}^{\dagger} \widehat{b} + \hbar g \widehat{a}^{\dagger} \widehat{a} (\widehat{b}^{\dagger} + \widehat{b})$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
photon mechanics interaction
or
"phonon"

- Quantum non-demolition measurement
- Quantum squeezing
- Ground state cooling
- Microwave-optical photon conversion
- Zero-point fluctuation of motion ...

* Aspelmeyer et al., Phys. Today 65, 29 (2012).

= microwave resonator

= microwave resonator

$$\omega_c = \sqrt{\frac{1}{LC(x)}} \approx \omega_c(x=0) + \left(\frac{\partial \omega_c}{\partial x}\right) x$$

"cavity frequency shift per zero-point motion"

$$g \equiv \left(\frac{\partial \omega_c}{\partial x}\right) x_{zp}$$

= microwave resonator

(U)

$$\omega_c = \sqrt{\frac{1}{LC(x)}} \approx \omega_c(x=0) + \left(\frac{\partial \omega_c}{\partial x}\right) x$$

"cavity frequency shift per zero-point motion"

$$g \equiv \left(\frac{\partial \omega_c}{\partial x}\right) x_{zp}$$

$$\widehat{H} = \hbar \omega_c \widehat{a}^{\dagger} \widehat{a} + \hbar \omega_m \widehat{b}^{\dagger} \widehat{b} + \hbar g \widehat{a}^{\dagger} \widehat{a} (\widehat{b}^{\dagger} + \widehat{b})$$

<u>Photon</u>	<u>Phonon</u>	<u>Interaction</u>	
c = 5.4 GHz	$\omega_{\rm m}$ = 4 MHz	g = 14 Hz	
= 0.9 MHz	Γ _m = 10 Hz		
	$x_{zp} = 2 \text{ fm}$		
		* JS et.al., <i>Science</i> 344 , 1262	(2014).

- Quantum non-demolition measurements
 JS et.al., Science 344, 1262 (2014).
- Quantum squeezing of motion
 Wollman, Lei, Weinstein, JS et.al., Science 349, 952 (2015).
 - Lei, Weinstein, **JS** *et.al.*, *Phys. Rev. Lett.* **117**, 100801 (2016).
Microwave resonance

Motion moves cavity resonance

Photon-phonon coupling

(Ideal) Detection of motion

May. 19. 2022

Continuous position detection of harmonic oscillator

* A. Clerk et.al., Rev. Mod. Phys. 82, 1155 (2010).

Standard quantum limit

of photons

* A. Clerk et.al., Rev. Mod. Phys. 82, 1155 (2010).

Quantum limit in gravitational-wave detectors

Braginsky⁶ has pointed out that the above "quantum limits" on ΔX_1 , ΔX_2 , and ΔN pose serious obstacles for gravitational-wave detection: To encounter at least three supernovae per year, one must reach out to the Virgo cluster of galaxies. But gravitational waves from supernovae at that distance will produce $|\Delta X_1| \simeq |\Delta X_2| \lesssim 0.3$ $\times [m/(10 \text{ tons})](\hbar/m\omega)^{1/2}$ in a mechanical oscillator on earth, corresponding to $\Delta N \lesssim 0.4(N + \frac{1}{2})^{1/2} [m/(10 \text{ tons})]$. For detectors of reasonable mass this signal is below the quantum limit.

* K. S. Thorne *et.al., Phys. Rev. Lett.* **40**, 667 (1978).

Evading quantum back-action (i.e. quantum non-demolition measurement)

"quadrature operators"

 $\widehat{X_1}(t) = \widehat{x}(t)\cos\omega t - \frac{\widehat{p}(t)}{m\omega}\sin\omega t; \ \widehat{X_2}(t) = \widehat{x}(t)\sin\omega t + \frac{\widehat{p}(t)}{m\omega}\cos\omega t$ i.e. $\hat{x}(t) = \widehat{X_1}(t) \cos \omega t + \widehat{X_2}(t) \sin \omega t$ $[\widehat{X_1}, \widehat{X_2}] = \frac{i\hbar}{m\omega}$ $\Delta X_1 \cdot \Delta X_2 \ge \frac{\hbar}{2m\omega} \checkmark$ $\widehat{X_1}$ $\frac{d\widehat{X_1}}{u} = \frac{\partial\widehat{X_1}}{\partial t} - \frac{i}{t} \left[\widehat{X_1}, \widehat{H_{osc}}\right] = 0$

Quadrature conserves; no measurement back-action!

* Braginskii *et.al., Sov. Phys. Usp.* **17**,644 (1975); Thorne *et.al., Phys. Rev. Lett.* **40**, 667 (1978). May. 19. 2022

Evading quantum back-action

of photons

* A. Clerk et.al., Rev. Mod. Phys. 82, 1155 (2010).

Evading quantum back-action

 $\omega_{c}-\omega_{m}$ ω_{c} $\omega_{c}+\omega_{m}$

$$\hat{H}_{int} \propto \hat{X}_1(1 + \cos 2\omega_m t) + \hat{X}_2 \sin 2\omega_m t$$

* Braginskii *et.al., Sov. Phys. Usp.* **17**,644 (1975); Thorne *et.al., Phys. Rev. Lett.* **40**, 667 (1978). May. 19. 2022

Experiments

* JS et.al., Science 344, 1262 (2014).

Experiments

"back-action on ONE quadrature"

90 90 80 80 70 70 (X(\phi)^2)/x_{zp}² 9 $\langle X_2^2 \rangle_{ba}$ (x²)², (x²)^{ba} 8.5 dB 60 $\langle x^2 \rangle_{h}$ 50 50 10 10 00 40 40 O Non-BAE D O BAE 30 10⁵ 10⁶ 107 30 104 -π/2 π/2 0 π \$ (rad) n_p

"Evade quantum back-action by 8.5 dB"

* JS et.al., Science 344, 1262 (2014).

10 min break

Mechanical quantum sensor

$\hbar \omega > k_B T$

- How to generate?
- How to apply them in sensing?
- How to hybrid with other quantum system?

Example1: Quantum electromechanical system

* LaHaye, **JS** et.al, "Nanomechanical measurements of a superconducting qubit", Nature **459**, 960 (2009).

May. 19. 2022

Example 2: Quantum optomechanical system

Mechanical oscillator coupled to photons

$$\widehat{H} = \hbar \omega_c \widehat{a}^{\dagger} \widehat{a} + \hbar \omega_m \widehat{b}^{\dagger} \widehat{b} + \hbar g \widehat{a}^{\dagger} \widehat{a} (\widehat{b}^{\dagger} + \widehat{b})$$

photon mechanics interaction or "phonon"

- <u>Quantum non-demolition measurement</u>
- Quantum squeezing
- Ground state cooling
- Microwave-optical photon conversion
- Zero-point fluctuation of motion ...

* JS et.al., Science 344, 1262 (2014).

Ground state cooling of mechanical motion

Reduction of mechanical motion (i.e. Cooling) $\hat{x}(t) = \widehat{X_1}(t) \cos \omega_m t + \widehat{X_2}(t) \sin \omega_m t$

Squeezing "phonons" $\hat{x}(t) = \widehat{X_1}(t) \cos \omega_m t + \widehat{X_2}(t) \sin \omega_m t$

Phase-dependent cooling

"Phase-dependent" reduction of mechanical motion (i.e. Squeezing)

 $\widehat{x}(t) = \widehat{X_1}(t) \cos \omega_m t + \widehat{X_2}(t) \sin \omega_m t$

Arbitrarily large steady-state bosonic squeezing via dissipation

- Optimal ratio between red and blue power
- Squeezing beyond 3dB possible
- Steady state is squeezed thermal state
- State purity vs. squeezing

* Kronwald *et.al. Phys. Rev. A* 88, 063833 (2014).

Squeezing more than 3 dB

* Lei, Weinstein, JS, Wollman, Kronwald, Marquardt, Clerk, Schwab, PRL 117, 100801 (2016).

May. 12. 2021

KRISS QEM Lab

 ω_m = 2.6 MHz

Niobium for better Cavity QEM sensor

Niobium cavity QEM works at higher temperatures magnetic fields.

	Aluminum	Niobium	The second se
Critical Temperature (Tc)	1.2K	9.26K	
Critical Magnetic Field(Hc)	0.01 T	0.82 T	
Density	2700 kg/m ³	8570 kg/m³	The second find the second second
Young's modulus	70 Gpa	105 GPa	Freestanding membrane
Poisson ratio	0.35	0.4	
Advantages	 Easy to control the film stress Large zero point motion due to the small mass 	 Good mechanical properties High critical temperature and magnetic field 	
Disadvantages	Low critical temperature	Difficult to control the film stress	Deformed membrane

* J. Cha et.al., "Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields", Nano Letters 21, 1800 (2021).

May. 19. 2022

Niobium QEM at 4 K

Back-action cooling at 4 K

- Cooling process accompanies with mechanical linewidth broadening
- Efficient cooling of mechanical mode temperature from 4.2 K to 76 mK

Electromechanical induced reflection of microwave at 4 K

- Probe microwave interferes destructively with mechanical sideband from pump
- Reflection window

$$\Gamma_{\rm EMIR} = \Gamma_{\rm m} \left(1 + \frac{4g_0^2 n_d}{\kappa \Gamma_m} \right) = \Gamma_{\rm m} (1 + C)$$

• Single photon coupling

$$g_0 \approx 3.3 \text{ Hz}$$

Cooperativity

$$C \approx 40$$

Niobium QEM under magnetic field

- Magnetic field B affects the microwave resonance frequency and linewidth.
- EMIR persists even at 0.8 T.
- Cooperativity decreases as *B* increases due to the increasing cavity decay rate.
- Single-photon coupling rate is independent of magnetic field.

Outlook: Niobium QEM for single spin control

PNAS 106, 1313-1317 (2009)

New J. Phys 21, 043049 (2019)

Nature Physics 6, 602-608 (2010)

Nanowire for wider QEM sensing applications

Nanomechanical characterization of quantum interference in a topological insulator nanowire

Minjin Kim

Kunwoo Kim

*Nature Comm. 10, 4522 (2019)

May. 19. 2022

Bi₂Se₃ nanowire electromechanical resonator

Bi₂Se₃ nanowire electromechanical resonator

"quantum capacitance" $C_Q = e^2 \cdot (\text{Density of States})$

* Luryi, Appl. Phys. Lett.. **52**, 501 (1988).

Capacitive tuning of mechanical resonance

"capacitive softening"

$$\delta k_{eff} \approx -\frac{1}{2} \frac{\partial^2 C}{\partial x^2} V_g^2$$

• Total capacitance
$$C = \frac{C_g C_Q}{C_g + C_Q}$$

- $C_Q \gg C_g$; C_g dominates softening
- C_Q , $\partial C_Q / \partial x$, $\partial^2 C_Q / \partial x^2$ modify δk_{eff}

 \Rightarrow Surface state C_q modulates mechanical resonance

Surface states of topological insulator

- Conducting surface states with insulating bulk
- Topologically protected

1D subband of TI nanowire surface

$$\varepsilon(n,k,\Phi) = \pm \hbar v_{\rm F} \sqrt{k^2 + \frac{(n+1/2 - \Phi/\Phi_0)^2}{R^2}}$$

* Bardarson *et al.*, *Phys. Rev. Lett.* **105**, 156803 (2010).

1D subband of TI nanowire surface

* Bardarson et al., Phys. Rev. Lett. 105, 156803 (2010).

May. 19. 2022

n+4

1D subband of TI nanowire surface

$$\varepsilon(n,k,\Phi) = \pm \hbar v_{\rm F} \sqrt{k^2 + \frac{(n+1/2 - \Phi/\Phi_0)^2}{R^2}}$$

* Bardarson et al., Phys. Rev. Lett. 105, 156803 (2010).

* $\Delta f_0 = \Delta f_I + \Delta f_{II}$

Aharonov-Bohm conductance oscillation

Period = $\Phi_0/(cross-section)$

Period = Δ

AB oscillation of mechanical resonance frequency

Period = $\Phi_0/(cross-section)$

Period = Δ

Nanomechanical resonance shift

Kunwoo Kim* (CAU)

* previously at IBS

Nanomechanical resonance shift

Nanomechanical microwave bolometer

Nanomechanical QEM detects heat from microwave photons.

Jihwan Kim (KAIST)

* J. Kim et.al., "Nanomechanical Microwave Bolometry with Semiconducting Nanowires", Physical Review Applied **15**, 034075 (2021).

Bolometer = thermal radiation detector

Bolometer = thermal radiation detector

Bolometer = thermal radiation detector

Resistive nanowire dissipates microwave power

* J. Kim *et.al.*, *Physical Review Applied* **15**, 034075 (2021).

Mechanical resonance signal comes from superconducting cavity

$$\overline{P} = \frac{P_m}{P_{pump}} = \frac{2(g_I^2 + g_{II}^2/4)}{\kappa^2} \langle x^2 \rangle$$

where $g_I = \partial \omega_c / \partial x$ and $g_{II} = \partial \kappa / \partial x$

$$\overline{P} = \frac{P_m}{P_{pump}} = \frac{2(g_I^2 + g_{II}^2/4)}{\kappa^2} \langle x^2 \rangle$$

where $g_I = \partial \omega_c / \partial x$ and $g_{II} = \partial \kappa / \partial x$

Nanowire controls cavity dissipation

* J. Kim *et.al.*, *Physical Review Applied* **15**, 034075 (2021).

Nanomechanical resonance thermometer

Microwave-power-dependent nanomechanical resonance

Nanomechanical microwave bolometry

- "Noise equivalent power" NEP = $4.5 \text{ pW/Hz}^{1/2}$
- Maximum detectable power ~ nW
- c.f. Josephson bolometer has NEP ~ aW/Hz^{1/2} and maximum power ~ fW (ref. *Nature* 586, 42 (2020))

Summary

"Quantum Sensing" : the use of a quantum system, quantum properties, or quantum phenomena to perform a measurement of a physical quantity nanomechanical resonator for superconducting qubit measurement

cavity electromechanics for quantum non-demolition measurement of motion

Nb cavity QEM

nplementation	Qubit(s)	Measured quantity(ies)	Typical frequency
Optomechanics Electromechanics	Phonons	Force, acceleration, mass, magnetic	kHzGHz
		field, voltage	

nanowire mechanics for quantum sensing

Outlook

quantum transduction

entangled force sensors

*Kotler et al., Science **372**, 622 (2021).

sensors for new physics

May. 19. 2022

TODARY 10 BELIEVE THE PART IN ANTICASY DESCRIPTION

Hybrid Quantum Systems Team

developing nano electro-mechanical and hybrid quantum devices

Junho Suh

Seung-Bo Shim Byoung-moo Ann

Post-doc : Junghyun Shin, Jihwan Kim (KAIST SRC) Ph.D. student : Younghoon Ryu (KAIST SRC)

Minkyu Lee

Hybrid Quantum Systems Team

developing nano electro-mechanical and hybrid quantum devices

Junho Suh

Seung-Bo Shim Byoung-moo Ann

Minkyu Lee

Post-doc : Junghyun Shin, Jihwan Kim (KAIST SRC) Ph.D. student : Younghoon Ryu (KAIST SRC)

> Hiring post-docs! contact: junho.suh@kriss.re.kr

Collaboration

- Chulki Kim, Jin Dong Song (KIST)
- Kunwoo Kim (IBS), Heechul Park (IBS), Heung-Sun Sim (KAIST)
- Jinhoon Jeong, Hyungsoon Choi (KAIST)
- Yong-Joo Doh (GIST), Dong Yu (UC Davis)
- Joon Sue Lee (U. Tennessee)
- Mann-Ho Cho (YU)
- ** Lei, Weinstein, Schwab, Roukes for the works at Caltech (2009,2014)

nst

국가과 막기술연구회

Summary

"Quantum Sensing" : the use of a quantum system, quantum properties, or quantum phenomena to perform a measurement of a physical quantity nanomechanical resonator for superconducting qubit measurement

cavity electromechanics for quantum non-demolition measurement of motion

Implementation Qubit(s) Measured quantity(ies) Typical frequency Optomechanics Phonons Force, acceleration, kHz-GHz Electromechanics mass, magnetic field, voltage

Nb cavity QEM

nanowire mechanics for quantum sensing

