

From Cavity to Circuit Quantum Electrodynamics

Dr. Byoung-moo Ann

Senior Research Scientist

Korea Research Institute of Standards and Science (KRISS)

^{19th} May 2023

KRISS

Outline

Part I - Fundamentals.

Backgrounds : Light-matter interaction.

Introduction to Cavity-QED.

Cavity-QED on circuits : Circuit-QED.

Experimental milestones in circuit QED.

Current trend in circuit QED.

Part II - Methods.

Analytical methods. Rotating frame. Rotating wave approximation. Perturbative diagonalization.

Numerical methods. QuTip QuCAT (Quantum Circuit Analysis Tool).

Outline

Part I - Fundamentals.

Backgrounds : Light-matter interaction.

Introduction to Cavity-QED.

Cavity-QED on circuits : Circuit-QED.

Experimental milestones in circuit QED.

Current trend in circuit QED.

Part II - Methods.

Analytical methods.

Rotating frame.

Rotating wave approximation.

Perturbative diagonalization.

Numerical methods. QuTip QuCAT (Quantum Circuit Analysis Tool).

Part I – Quantum ElectroDynamics.

Revealing quantum nature of electromagnetic interaction.

The most successful quantum field theory.

"the jewel of physics"

Part I – Cavity QED : The simplest toy-model.

Understanding light-matter interaction at the most fundamental level.

Describe the interaction between 'quantized' matter (atoms) and 'quantized' fields (cavity photons).

The simplest toy-model of QED.

KRISS

A half of 2012 Nobel prize was shared to works regarding cavity QED.

Part I – Cavity QED in microwave domain.

(Walther et al.)

(Haroche *et al.*)

Atom

Atoms in Rydberg states.

Microwave transition frec. Large dipole strength.

Cavity

Superconducting Fabry-Perot cavity.

f~100 GHz.

Part I – Cavity QED in optical domain.

Part I – Light-matter interaction.

An atom under single mode electromagnetic radiation.

https://atomoptics.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf

Part I – How to have quantum fields ?

An atom in a free space.

KRISS

Free space already provides quantum fields.

 \rightarrow Vacuum fluctuation.

 \rightarrow Irreversible process only.

(spontaneous emission, Purcell effect...)

Part I – Necessity of Cavities.

An atom between high-reflectivity mirrors.

Role of cavities :

Amplifying quantum vacuum effects to specific vacuum modes.

Suppress quantum vacuum effects to the other vacuum modes.

 \rightarrow Coherent process can be realized.

Part I – Necessity of Cavities.

An atom between high-reflectivity mirrors.

Couplings to one the cavity modes dominate others.

 \rightarrow Single-mode cavity-QED : The simplest quantum systems of light-matter interaction.

Part I – Cavity QED : Models and key parameters.

Phys. Rev. Research 3, 023079 (2021).

Key parameters :

Quantum Rabi model :
$$\hbar \omega_{\hat{a}} \hat{a}^{\dagger} \hat{a} + \hbar \omega_{0} \frac{\hat{\sigma}_{z}}{2} + \hbar g \sigma_{x} (a^{\dagger} + a)$$

Rotating wave approximation. + Dissipation (κ and γ
Jaynes-Cummings model : $\hbar \omega_{\hat{a}} \hat{a}^{\dagger} \hat{a} + \hbar \omega_{0} \frac{\hat{\sigma}_{z}}{2} + \hbar g \left(\hat{a} \hat{\sigma}_{+} + \hat{a}^{\dagger} \hat{\sigma}_{-} \right)$

KRISS

).

Part I – Cavity QED : Strong resonant regime. $g < \gamma, \kappa$; $\Delta = 0$

Atom and cavity become fully hybridized. Ω **Transmitted Power** = 2g \rightarrow Not distinguishable. $(\kappa + \gamma)/2$ $2\sqrt{2}g$ $|+, (1)\rangle$ $|g, 2\rangle$ $|e, 1\rangle$ $-, (1) \rangle$ $\omega = \omega_0$ **Probe Frequency** $|+, (0)\rangle$ $|e, 0\rangle$ $|g, 1\rangle$ $|g, 1\rangle$ Vacuum Rabi-oscillation. $-, (0) \rangle$ Rabi $\omega = \omega_0$ oscillations $|\mathbf{g},0\rangle$ $|\mathbf{g}, 0\rangle$ *Reference: $|e, 0\rangle$ KRISS time D. Steck, quantum-optics lectures.

Vacuum Rabi-splitting.

https://atomoptics.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf

Part I – Cavity QED : Dispersive regime. $g \ll \Delta$

Atom and cavity conserve their originalities but undergo renormalization in their transition frequencies.

KRISS

D. Steck, quantum-optics lectures.

*Reference:

https://atomoptics.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf

Part I – Cavity QED : Milestones – Non-demolition measurement.

```
In the dispersive regime, <u>atom-cavity interaction</u> can be reduced to H_I \sim \chi \hat{a}^+ \hat{a} \hat{\sigma}_z.
```

Strong dispersive regime.

No energy interchange between atoms and photons.

Part I – Cavity QED : Milestones – Non-demolition measurement.

Serge Haroche, FRISNO-Les Houches; February 12 2007.

Part I – Cavity QED : Milestones – Quantum vacuum effects.

KR

Part I – Cavity QED : Milestones – Nonclassical lasing.

Part I – Cavity QED : Challenges.

Limited atom-cavity coupling strengths. Mechanical stability, laser coherence, cooling, trapping...

Alternative systems ?

What about using 'artificial atoms' defined on solid state platforms?

Superconducting Qubits

Engineered Defects

Quantum Dots

(M.B. Ritter, IEDM 2018 short course).

Outline

Part I - Fundamentals.

Backgrounds : Light-matter interaction.

Introduction to Cavity-QED.

Cavity-QED on circuits : Circuit-QED.

Experimental milestones in circuit QED.

Current trend in circuit QED.

Part II - Methods.

Analytical methods.

Rotating frame.

Rotating wave approximation.

Perturbative diagonalization.

Numerical methods. QuTip QuCAT (Quantum Circuit Analysis Tool).

Part I – Introduction to circuit QED.

KRIS

Requirements :

Operation temperature \rightarrow 10 mK.

Operation frequency \rightarrow 4-8 GHz.

Lumped + Distributed circuit elements. ex) transmission lines.

Superconductivity: Reduce degree of freedoms to unity.

Josephson junction.

Part I – Ingredients of circuit QED : Linear elements.

d Sizes of elements.

Distributed elements.

*Reading list : Microwave Engineering, David M. Pozar.

Types of transmission lines.

If you immediately readout the Ohm meter before the probe signal propagates...

But... these are imaginary situations.

KRISS

How can we measure Z_0 in practice?

The pulse is totally dissipated when $Z_0=Z_L$ (Impedance matching).

Otherwise, not fully dissipated and the remaining part of the pulse will be reflected back. (Impedance mismatching). 26

Part I – Ingredients of circuit QED : Linear elements – TL resonators.

Transmission lines + boundary conditions **→** Tansmission-Line (TL) resonators.

Chapter 6, Microwave Engineering, David M. Pozar.

Part I – Ingredients of circuit QED : Linear elements – LE resonators.

Resonators without TL: Lumped-Element (LE) resonators (useful when you need very high or low impedance).

High-impedance resonator.

Low-impedance resonator.

• Downside :

Overheads when you need multi-mode resonators.

Directly fabricating inductors and capacitance.

KRISS

 $\lambda \gg d$

Part I – Circuit QED : Circuits ↔ Mechanical systems.

	Canonio	Canonical quantization.	
a T	Mechanical oscillators.	LC resonator.	
2	$\hat{X}; \hat{P}$	$\hat{\Phi};~\hat{Q}$	
Canonical coordinate ?	$[\hat{X}, \hat{P}] = i\hbar$	$[\hat{\Phi},\hat{Q}]=i\hbar$	
Conjugate momentum ?	$\omega_o = \sqrt{k/m}$	$\omega_o = 1/\sqrt{LC}$	
Flux (Φ) and charge(Q) variable are preferred	d. $\overline{Z_o = 1/\sqrt{km}}$	$Z_o = \sqrt{L/C}$	
$\frac{dV}{dt} = \Phi, \qquad H = \frac{1}{2C}Q^2 + \frac{1}{2L}\Phi^2$ $\frac{dQ}{dt} = I.$	$X_{\rm zps} = \sqrt{\hbar Z_o/2};$	$\Phi_{\rm zps} = \sqrt{\hbar Z_o/2};$	
	$P_{\rm zps} = \sqrt{\hbar/2Z_o}$	$Q_{\rm zps} = \sqrt{\hbar/2Z_o}$	
	$\Rightarrow X_{\rm zps} P_{\rm zps} = \hbar/2$	$\Rightarrow \Phi_{\rm zps} Q_{\rm zps} = \hbar/2$	
	$\hat{a} = \frac{1}{2} \left(\frac{\hat{X}}{X_{zps}} + i \frac{\hat{P}}{P_{zps}} \right)$	$\hat{a} = \frac{1}{2} \left(\frac{\hat{\Phi}}{\Phi_{zps}} + i \frac{\hat{Q}}{Q_{zps}} \right)$	
A 'flux particle' moving on a harmonic potential.	$\hat{X} = X_{\rm zps} \left(\hat{a} + \hat{a}^{\dagger} \right)$	$\hat{\Phi} = \Phi_{\rm zps} \left(\hat{a} + \hat{a}^{\dagger} \right)$	
	$\hat{P} = -iP_{\rm zps}\left(\hat{a} - \hat{a}^{\dagger}\right)$	$\hat{Q} = -iQ_{\rm zps}\left(\hat{a} - \hat{a}^{\dagger}\right)$	
$E_L \sim 1/L$ Inductive e	nergy $\left[\hat{a}, \hat{a}^{\dagger}\right] = 1$	$\left[\hat{a}, \hat{a}^{\dagger}\right] = 1$	
$E_c \sim 1/C$ Charge ene	rgy		
KRISS			

Part I – Ingredients of circuit QED : Nonlinear elements – Josephson junction

Part I - SuperConducting Qubits.

COOPER-PAIR-BOX

Superconducting Qubit Evolutionary Phylogeny

RF-SQUID

KRISS

Old-fashion classification. Logic Non-linear oscillator d Current-biased junction Readout Excited |1> ENERGY "Phase" VS PHASE Ground state |0> PHASE 6 Island $n_{g} = 0.5$ a Cooper-pair box Charged ENERGY CHARGE VS. "Charge" Not charged CHARGE n b Magnetic-flux box (RF-SQUID) Current circulation $\phi_{\text{ext}} = \pi$ Left ENERGY "Flux" VS PHASE Right g 0 PHASE d You & Nori, Physics Today, November (2005) National Institute of Standards and Te

(S. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons).

Part I - SuperConducting Qubits.

COOPER-PAIR-BOX

Superconducting Qubit Evolutionary Phylogeny

RF-SQUID

KRISS

Old-fashion classification. ogic Non-linear oscillator d Current-biased junction Readout Excited |1> ENERGY "Phase" VS PHASE Ground state |0> PHASE 6 Island $n_{g} = 0.5$ a Cooper-pair box Charged ENERGY CHARGE VS. "Charge" Not charged CHARGE n b Magnetic-flux box (RF-SQUID) Current circulation $\phi_{\text{ext}} = \pi$ Left ENERGY "Flux" VS PHASE Right g 0 PHASE d You & Nori, Physics Today, November (2005) National Institute of Standards and Te

(S. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons). Part I - SuperConducting Qubits.

Superconducting Qubit Evolutionary Phylogeny

RF-SQUID

Currently sitting on the throne.

Transmon

Fluxonium

But many other qubit designs are still being devised and demonstrated.

(S. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons).

Part I - SCQ Zoo.

Transmon (-related systems).

Circuit QED: Superconducting Qubits Coupled to Microwave Photons).

KRISS

(S. Girvin,

Part I – SCQ : From <u>capacitance</u> to <u>transmon</u>.

Part I – SCQ : From <u>capacitance</u> to <u>transmon</u>.

 n_g

KRISS

Part I – SCQ : From LC resonator to transmon.

KRISS

Transmons as weakly anharmonic resonators.

 \rightarrow Charge and phase \neq good quantum number.

 \rightarrow Oscillator excitation = good quantum number.

Part I – Circuit QED : SCQs + Resonators.

Part I – Circuit QED : SCQs + Resonators.

KRISS

Driving charge island with classical fields.

Driving charge island with quantum fields (LC circuit vacuum fluctuation).

Part I – Circuit QED : SCQs + Resonators.

cQED Hamiltonian model :

$$\hat{H}_{cQED} = \underbrace{4E_C(\hat{n} - n_g)^2 + E_J \cos\hat{\phi}}_{SCQ} - \underbrace{g_0 \hat{n}(\hat{b} + \hat{b}^{\dagger})}_{Interaction} + 4E_C(n_g + n_r(\hat{b} + \hat{b}^{\dagger}))^2 + \underbrace{\hbar\omega_r \hat{b}^{\dagger} \hat{b}}_{Resonator}$$

Approximation I (Two-level systems):

$$\hat{H}_{cQED}/\hbar \longrightarrow \hat{H}_{QRM}/\hbar = \frac{\omega_0}{2}\hat{\sigma}_z - g(\hat{b} + \hat{b}^{\dagger})\hat{\sigma}_x + \omega_r \hat{b}^{\dagger}\hat{b}.$$

Approximation II (Duffing-Harmonic coupled oscillators):

$$\hat{H}_{cQED}/\hbar \longrightarrow \hat{H}_{D-H}/\hbar = \omega_t \hat{a}^\dagger \hat{a} + \omega_r \hat{b}^\dagger \hat{b} - g(\hat{a} + \hat{a}^\dagger)(\hat{b} + \hat{b}^\dagger) - \frac{E_C}{12}(\hat{a} + \hat{a}^\dagger)^4.$$

Part I - SCQ : Transmon - etymology.

Transmission line shunted plasma oscillation qubit.

Quantum Inf Process 8, 105–115 (2009)

Etymology sounds reasonable but...

(2007).

Part I - SCQ : Transmon - etymology.

Transmission line shunted **plasma oscillation** qubit ?

*Nowadays :

KRISS

(QuTech).

(UCSB).

(Princeton).

(IBM). 📕

Part I – Circuit vs Cavity QED (transmon case only).

KRISS

	Circuit	Cavity
Canonical relation	$[\Phi, Q] = i$	[x,p] = i
Dipole operaotr	Q	x
Frecquency scale	GHz	THz
Coupling scale	$g/2\pi~\sim 10-100$ MHz	$g/2\pi~\sim 1~{ m MHz}$
Two-state approximation	Limited	Excellent

Part I – circuit QED : Qubit state control.

Drive line on a circuit.

KRIS

Part I – circuit QED : Qubit state readout.

Part I – circuit QED : Qubit state readout.

Normally use 'readout resonator's dispersively coupled to SCQs.

Recall, $H_I \sim \chi \ \widehat{a}^+ \widehat{a} \ \widehat{\sigma}_z$.

Part I – circuit QED : Two-tone spectroscopy.

too luxurious at this step.

Part I – circuit QED : Pulsed measurement.

Part I – circuit QED : Elementary experiments.

Exploring transmon energy level structure.

*Reading list : PRA, **76**, 042319 (2007).

Part I – circuit QED : Elementary experiments.

Photon number splitting with strong dispersive coupling.

Part I – circuit QED : Elementary experiments (T1 meas).

R. Bianchetti, QUDEV, ETH Zurich (2010)

Part I – circuit QED : Elementary experiments (T2 meas).

KRISS

R. Bianchetti, QUDEV, ETH Zurich (2010)

Part I – circuit QED : Real experiments – setup.

Part I – circuit QED : Real experiments – setup.

► To protect the device from radiation and magnetic noise.

Part I – circuit QED : Real experiments – setup.

Inside

Part I – circuit QED : Real experiments – frec domain meas.

Part I – circuit QED : Real experiments – time domain meas.

Arbitrary Waveform Generator (AWG 520)

Outline

Part I - Fundamentals.

Backgrounds : Light-matter interaction.

Introduction to Cavity-QED.

Cavity-QED on circuits : Circuit-QED.

Experimental milestones in circuit QED.

Current trend in circuit QED.

Part II - Methods.

Analytical methods.

Rotating frame.

Rotating wave approximation.

Perturbative diagonalization.

Numerical methods. QuTip QuCAT (Quantum Circuit Analysis Tool).

Exploring fundamental vacuum effects.

Part I – Current trends in circuit QED.

Scaling up qubit numbers.

53 qubits (S) Adjustable coupler 10 mm

Nature 574, 505(2019).

KRISS

127 qubits (IBM Eagle).

https://research.ibm.com/quantum-computing

Roadmaps toward 100k qubits.

Part I – Current trends in circuit QED.

Replacing resonators with others.

Metamaterials

KRIS

PRA 88, 043806 (2013). Nat. Phys **19**, 1 (2023).

Acoustic waves resonators

Nature 563, 661(2018).

68

Part I – Current trends in circuit QED.

Hybrid circuit QED

cQED with mechanics.

Nat. Phys **13**, 1163 (2018).

cQED with QD.

cQED with Magnons.

Science **359**, 1123 (2018).

PRL 130, 193603 (2023).

Outline

Part I - Fundamentals.

Backgrounds : Light-matter interaction.

Introduction to Cavity-QED.

Cavity-QED on circuits : Circuit-QED.

Experimental milestones in circuit QED.

Current trend in circuit QED.

Part II - Methods.

Analytical methods. Rotating frame. Rotating wave approximation. Perturbative diagonalization.

Numerical methods. QuTip QuCAT (Quantum Circuit Analysis Tool).

KRISS

Part II – Analytical methods.

In cQED research, you will often encounter Hamiltonian like,

 \rightarrow Composed of sigma, ladder operators with oscillating time dependence...

 \rightarrow Multi-mode, off-diagonal, rapid time-dependent...

Also, typically dissipation process is not negligible in the experiments.

 \rightarrow Thus, Schrodinger equation is not enough.

Part II – Open quantum system : Master equation.

Master equation :

$$\frac{d\hat{\rho}_{s}}{dt} = -i\left[\hat{H}_{s}(t), \hat{\rho}_{s}(t)\right]$$
Liouvillian, unitary evolution
$$+ \sum_{n} \frac{1}{2} \left(2\hat{C}_{n}\hat{\rho}(t)\hat{C}_{n}^{\dagger} - \hat{\rho}(t)\hat{C}_{n}^{\dagger}\hat{C}_{n} - \hat{C}_{n}^{\dagger}\hat{C}_{n}\hat{\rho}(t)\right).$$

Lindbladian, non-unitary evolution

$$\hat{C}_2 = \frac{1}{\sqrt{T_2^*}} (|0\rangle \langle 0| - |1\rangle \langle 1|)$$
For two-level atom

 \rightarrow Solving master equations with time-dependent Hamiltonian takes very long time even in numerical manners.

 \rightarrow Fitting the data with master equation model with fast time-dependence?

Practically impossible in normal cases.

*For derivation and detailed information in the general systems : D. Steck, quantum-optics lectures. https://atomoptics.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf
Part II – Rotating frame : Getting rid of time-dependence.

Simplifying Hamiltonian by moving together with oscillating terms.

KRISS

(Lab frame).

(Rotating frame).

Dynamics looks much simpler in the rotating frame. <u>No approximation yet !</u>

Part II – Rotating frame.

Rotating transformation :

$$\widehat{H}_{Rot} = \widehat{U}_{R}(t)\widehat{H}_{Lab}(t)\widehat{U}_{R}^{+}(t) + i\widehat{U}_{R}^{+}(t)\partial_{t}\widehat{U}_{R}(t)$$

Generators :

KRISS

Two-state systems
$$\widehat{U}_{R}^{TLS} = e^{-i\omega_{d}t * \widehat{\sigma}_{z}/2}$$

Harmonic oscillators $\widehat{U}_{R}^{HO} = e^{-i\omega_{d}t * \widehat{a}^{\dagger} \widehat{a}}$

Rules:

Do not touch already existing diagonal terms.

$$i\widehat{U}_{R}^{+}(t)\partial_{t}\widehat{U}_{R}(t) = -\omega_{d}\widehat{a}^{+}\widehat{a} \text{ or } -\frac{\omega_{d}}{2}\widehat{\sigma}_{z}$$

$$\hat{a} \rightarrow \hat{a} e^{-i\omega_d t}$$

or
 $\hat{\sigma}_- \rightarrow \hat{\sigma}_- e^{-i\omega_d t}$

Destruction operator become more destructive and vice versa.

Let's check.

$$\hat{H}_{Lab} = \frac{\omega_q}{2}\hat{\sigma}_z + \frac{\Omega_d}{2}e^{i\omega_d t}\hat{\sigma}_- + \frac{\Omega_d}{2}e^{-i\omega_d t}\hat{\sigma}_+$$
$$\hat{H}_{Rot} = \frac{\omega_q - \omega_d}{2}\hat{\sigma}_z + \frac{\Omega_d}{2}\hat{\sigma}_- + \frac{\Omega_d}{2}\hat{\sigma}_+$$

Part II – Doubly Rotating frame.

Multi-mode situation :

$$\hat{\mathscr{H}} = \frac{\omega_q - \omega_p (\omega_c + 2\omega_d - \omega_p)}{2} \partial_z + \frac{\omega_c \hat{a} \cdot \hat{a}}{\partial_c \hat{a}} \partial_z \hat{a}^{\dagger} \hat{a} + \frac{\Omega_{sb}}{2} \left(\hat{a} \hat{\sigma}_+ e^{-\frac{2\omega_d t}{2}} + \hat{a}^{\dagger} \hat{\sigma}_- e^{-\frac{2\omega_d t}{2}} \right) + \frac{\Omega_p}{2} \left(\hat{\sigma}_+ e^{-\frac{i\omega_p t}{2}} + \hat{\sigma}_- e^{+\frac{i\omega_p t}{2}} \right),$$

$$\hat{\mathcal{H}} \qquad \hat{\mathcal{H}}^p = e^{-i(\omega_p - 2\omega_d)t \cdot \hat{a}^{\dagger} \hat{a}} \cdot e^{-i\omega_p t \cdot \hat{\sigma}_z/2}$$

$$\hat{\mathscr{H}}^q = \frac{(\omega_q - \omega_p)}{2} \hat{\sigma}_z + (\omega_c + 2\omega_d - \omega_p) \hat{a}^{\dagger} \hat{a} - 2\chi_{qt} \hat{\sigma}_z \hat{a}^{\dagger} \hat{a} + \frac{\Omega_{sb}}{2} \left(\hat{a} \hat{\sigma}_+ + \hat{a}^{\dagger} \hat{\sigma}_- \right) + \frac{\Omega_p}{2} \left(\hat{\sigma}_+ + \hat{\sigma}_- \right).$$

Part II – Rotating wave approximation : When rotating frame method fails.

$$\begin{aligned} \widehat{H}_{Lab} &= \\ & \frac{\omega_q}{2} \widehat{\sigma}_z + \widehat{\Omega}_d \cos \omega_d t \, \widehat{\sigma}_x \end{aligned} \\ &= \frac{\Omega_d}{2} e^{i\omega_d t} \, \widehat{\sigma}_- + \frac{\Omega_d}{2} e^{-i\omega_d t} \, \widehat{\sigma}_+ + \frac{\Omega_d}{2} e^{-i\omega_d t} \, \widehat{\sigma}_- + \frac{\Omega_d}{2} e^{i\omega_d t} \, \widehat{\sigma}_- \end{aligned}$$

Let's move on to rotating frame.

 $\begin{array}{c} \text{co-rotating} & \text{counter-rotating} \\ \rightarrow \frac{\Omega_d}{2}\hat{\sigma}_{-} + \frac{\Omega_d}{2}\hat{\sigma}_{+} + \frac{\Omega_d}{2}e^{-2i\omega_d t}\hat{\sigma}_{-} + \frac{\Omega_d}{2}e^{2i\omega_d t}\hat{\sigma}_{+} \end{array}$

We still have some oscillating terms...

Rotating wave approximation :

Neglecting counter-rotating components as long as $\omega_q, \omega_d \gg \Omega_d, \omega_q - \omega_d$ are satisfied.

Part II – Rotating wave approximation (RWA).

(Rotating frame).

KRIS

Capturing only the slow and useful dynamics of the systems.

Part II – Rotating wave approximation - breakdown.

Discrepancy is getting larger...

(Rotating frame).

Part II – Rotating wave approximation - breakdown.

Entirely deviate...

(Rotating frame).

Part II – Rotating wave approximation – general application.

Classifying the terms that can be neglected.

*Caution – should compare terms of the same form.

 $\frac{\omega_{q}}{2}\hat{\sigma}_{z} + \frac{\Omega_{d}}{2}e^{i\omega_{d}t}\hat{\sigma}_{-} + \frac{\Omega_{d}}{2}e^{-i\omega_{d}t}\hat{\sigma}_{+} + \frac{\Omega_{d}}{2}e^{-i\omega_{d}t}\hat{\sigma}_{-} + \frac{\Omega_{d}}{2}e^{i\omega_{d}t}\hat{\sigma}_{+}$ $\omega_{t}\hat{a}^{\dagger}\hat{a} + \omega_{r}\hat{b}^{\dagger}\hat{b} - g(\hat{a} + \hat{a}^{\dagger})(\hat{b} + \hat{b}^{\dagger})$ $\omega_{r}\hat{a}^{\dagger}\hat{a} + \frac{\omega_{a_{j}}''}{2}\hat{\sigma}_{z_{j}} + g(\hat{\sigma}_{+_{j}}e^{-i\omega_{d_{k}}t} + \hat{\sigma}_{-_{j}}e^{+i\omega_{d_{k}}t})(\hat{a}^{\dagger} + \hat{a})$

Practice :

Part II – Perturbative diagonalization.

Obtain approximate eigenvalues in analytical forms.

(S. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons).

KRI

Strategy.

Let's define,
$$U = e^{\hat{\eta}}; U^{\dagger} = e^{\hat{\eta}^{\dagger}} = e^{-\hat{\eta}}$$

 $\tilde{H} \approx H_0 + V + [\hat{\eta}, H_0] + [\hat{\eta}, V] + \frac{1}{2}[\hat{\eta}, [\hat{\eta}, H_0]]$
If $[\hat{\eta}, H_0] = -V$ is satisfied,
 $\Rightarrow \tilde{H} = H_0 + \frac{1}{2}[\hat{\eta}, V]$
normally diagonal.

'Schrieffer-Wolff transformation.'

*Today's tutorial is applicable for time-independent cases only. *See the following papers for time-dependent cases.

Phys. Rev. Res **4**, 013005 (2022). Phys. Rev. Appl **18**, 024009 (2022).

Part II – Perturbative diagonalization.

Revisit : dispersive interaction.

KRISS

*Please recall that non-demolition measurement scheme fails for large cavity photon numbers.

* The neglected higher-order terms have off-diagonal components,

 \rightarrow Induce qubit-cavity energy exchanges when the approximation breakdowns.

82

Outline

Part I - Fundamentals.

- **Backgrounds : Light-matter interaction.**
- Introduction to Cavity-QED.
- **Cavity-QED on circuits : Circuit-QED.**
- **Experimental milestones in circuit QED.**
- **Current trend in circuit QED.**

Part II - Methods.

- Analytical methods.
 - Rotating frame.
 - Rotating wave approximation.
 - Perturbative diagonalization.
- Numerical methods. QuTip QuCAT (Quantum Circuit Analysis Tool).

Part II – QuTip.

Opensource software for simulating the dynamics of open quantum systems.

https://qutip.org/

J. R. Johansson, P. D. Nation, and F. Nori, Comp. Phys. Comm. **184**, 1234 (2013) J. R. Johansson, P. D. Nation, and F. Nori, Comp. Phys. Comm. **183**, 1760–1772 (2012)

Part II – QuTip.

def spectroscopy_eps(wq, Aq, gamma, Nq, wc, kappa, Nc, eps, wd_list, chi, g):

```
a = tensor(destroy(Nq), qeye(Nc))
b = tensor(qeye(Nq), destroy(Nc))
num_b = b.dag()*b
num_a = a.dag()*a
```

```
Nq = 2, \hat{a} = \hat{\sigma}_{-} effectively.
```

```
r=[]
```

H0 = (wq)*num_a + (wc)*num_b - 0.5*Aq*a.dag()*a.dag()*a*a - g*(a.dag()*b + b.dag()*a) for wp in wp_list:

```
H = H0
H -= wp*num_a
H -= wp*num_b
H += +eps*1j*(a.dag()-a)
H -= 2*pi*chi*num_a*num_b
```

```
c_ops = []
c_ops.append(np.sqrt(gamma*(1.))*a)
c_ops.append(np.sqrt(kappa*(1.))*b)
```

```
rho_ss = steadystate(H, c_ops)
r.append([expect(a.dag()*a,rho_ss)])
return np.array(r)
```

$$\hat{\mathscr{H}} = \frac{\omega_q}{2} \hat{\sigma}_z + \omega_t \hat{a}^{\dagger} \hat{a} - 2\chi_{qc} \hat{\sigma}_z \hat{a}^{\dagger} \hat{a} + \frac{\Omega_{sb}}{2} \left(\hat{a} \hat{\sigma}_+ + \hat{a}^{\dagger} \hat{\sigma}_- \right) + \frac{\Omega_p}{2} \left(\hat{\sigma}_+ e^{-i\omega_p t} + \hat{\sigma}_- e^{+i\omega_p t} \right),$$

Spectrum simulation of electromagnetically induced transparency. I used this simulation to fit the experimental data.

Part II – QuTip : overcoming memory issue in time-dependent problem solving.

When you should solve time-dependent problem, the below situation requires huge overheads.

If $\Omega_{gate} \ll \omega_d$,

 \rightarrow Need very small timestep and a long evolution time.

 \rightarrow Deplete RAM.

Part II – QuTip : overcoming memory issue in time-dependent problem solving.

Segment + combine method.

Calculation :

Calculate 1 \rightarrow Save data to hard disk \rightarrow Clean RAM \rightarrow Calculate 2 \rightarrow \cdots

Data plot :

Load data from hard disk. Selectively choose the segments. Loading all data at once might have your computer frozen.

https://github.com/bann-01/2-photon-sideband-modules

Part II – QuCAT.

QuCAT (Quantum Circuit Analysis Tool) – developed by Dr. Mario Gely (my previous PhD groupmate).

https://qucat.org/ New J. Phys. **22** 013025 (2020).

Target systems :

Weakly nonlinear circuits comprised of multiple Josephson junctions & linear lumped elements.

Principle : Black-box circuit quantization (PRL 108, 240502 (2012).

Part II – QuCAT.

https://qucat.org/ New J. Phys. **22** 013025 (2020).

You can draw whatever circuits you want to simulate.

but distributed elements are not supported...

Parameters should meet 'weakly anharmonic' condition.

for example, not applicable to fluxoniums.

KRISS

Intuitive outputs. f,k,A,chi = cir.f_k_A_chi(pretty_print=True,Lj = 8e-9) mode freq. diss. anha. 5.01 GHz 1.57 MHz 583 Hz 0 1 5.6 GHz 3.84 kHz 191 MHz Kerr coefficients (diagonal = Kerr, off-diagonal = cross-Kerr) mode 0 1 0 583 Hz 1 667 kHz 191 MHz $\hat{H} = \sum_m \sum_{n \neq m} (\hbar \omega_m - A_m - rac{\chi_{mn}}{2}) \hat{a}_m^\dagger \hat{a}_m - rac{A_m}{2} \hat{a}_m^\dagger \hat{a}_m^\dagger \hat{a}_m \hat{a}_m - \chi_{mn} \hat{a}_m^\dagger$ Qutip-compatible. Qutip's quantum object. #_Compute hamiltonian (for h=1, so all energies are expressed in frequency units, not angular) H dir.hamiltonian(modes = [0,1],# Include modes 0 and 1 taylor = 4,# Taylor the Josephson potential to the power 4 excitations = [8,10],# Consider 8 excitations in mode 0, 10 for mode 1 Lj = 8e-9)# set any component values that were not fixed when building the circuit # QuTiP method which return the eigenergies of the system ee = H.eigenenergies()

You can play with results as if using qutip.

Thanks for your attention.

