Mechanical Vibrations and Waves

for Quantum Technology

May 19, 2023
The 12t School of Mesoscopic
Physics: Hybrid Quantum Systems

¥§1%1933‘D§$:¥

Jinwoong Cha (Senior Research Scientist)

Hybrid Quantum Systems Team
Quantum Technology Institute
Korea Research Institute of Standards and Science




Vibrations and Waves

Musial Instruments

vibrating object

Radiation

Vibration: time-periodic motion of a mechanical object

Wave: propagation of energy and information via a space

Wave Propagation Sensor

Ear

Relevant Physical Parameters:

« Density or mass

« Tension or internal stress
« Elastic properties

* Physical dimensions



Vibrations and Waves: that we want to avoid..

Fault scarp

Wave fronts
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Tacoma Bridge Seismic Waves

We might want to remove vibrations and waves at the macroscale..



Vibrations and Waves: for fun

We can take advantage of waves, but be careful about sharks !!!



Vibrations and Waves at the Nanoscale
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Nanomechanical Systems and Their Merits

p—

* small device footprint (A,nonons K Apnotons)
 high-frequency operations

* low-energy loss (high Q)

 electromechanical and optomechanical coupling
« coupling with gubits, spins, charges, etc.

electric
field

Nanomechanical Systems are
perfect platforms for
interconnecting different
physical systems!



Mechanical Vibrations and Waves for Quantum Technology
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Mechanical Vibrations of a Single Body

d?x X
Newton’s second law mﬁ = F

d?x

mﬁ=—kx k

d?’x .
mﬁ +kx =0 Single degree of freedom
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d?x ,
W + (on —

3| = |

natural frequency Wy =

Nature 458, 1001-1004 (2009) Nat. Nanotechnol. 4, 861-867 (2009)



Mechanical Vibrations of a Single Body with Damping

d*x k X
Newton’s second law mw = Z F
d*x dx F(t) = F, sin(wt)
m—— = —kx —c— + F,sin(wt 0
dt? qt + Fosin(@t) c
d2x+ dx+k Fy sin(wt) i | i | ’
— Mm—+c— x = F,sin(w ; | | :
dt2 dt 0 o [ maxima]
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Mechanical Vibrations of a Single Body with Damping

d?x _dx F, Kk X
12 + I‘d— + wix = Esm(wt)

If we calculate the steady state solution with

F(t) = F, sin(wt)

x = x(w) sin(wt + ¢) C
we obtain
Fy
x(w) = 6 .
2 2\X2 sy e maxima
m\/(a)l_') _I_ (a) ) 5 o= z=00
— 7=0.1
— 4 — 7=0.2 | ]
— 7=0.3
¢ =tan"( ol ) ‘i’ ’ T80
w2 — a)g N i c=§1.o )
Note: < asingle mass system has one resonant frequency 1
 the amplitude goes maximum at the resonance . | | . . .
* low damping leads to large displacement 0.0 0.5 1.0 1.5 2.0 2.5 30 W



Mechanical Vibrations of a Single Body with Damping

When we analyze resonance data from experiments, we fit to the k
Lorentzian curve to obtain the resonance frequency and the

damping rate. How then the displacement response is related to the
Lorentzian?

F(t) = F,sin(wt)

Let’s begin with the displacement spectrum we obtained previously.

C
x(w) = fo

m | (wl)? + (w§ — w?)?

Around the resonance w = wg, we can use the following approximation and insert this to the displacement equation.

(w§ — w?) = (wo + w)(Wy — W) = 2wy (wWy — W)
The displacement function then becomes
F, Fo
x(a)) — — >

m\/(a)OF)z + (Zwo(wo — a)))z meo\/(g) + (wy — w)?




Mechanical Vibrations of a Single Body with Damping

In experiment, the response of a mechanical resonator is related to its k X
energy, we should consider the square of the displacement. Thus,
Fs
2 _
)™ = I'\2 F(t) = F, sin(wt)
— SIN(w
4m2w§ [(7) + (wo — a))zl - 0

1

2
+ (wg — a))zl «—— This formula is the well known Lorentzian function!

Example) a resonance curve of a

) N 125}
nanomechanical resonator g : @y = 27 % 8.369 MHz
< 100}
o - I =
= i ~27 x 810 Hz
c 75}
k i W .
S sof Q = -0 quality factor

] o R T
8.36 8.37 8.38 r
Frequency (MHz)



Mechanical Vibrations of a Two-Body System

Let’'s consider a case where two masses exist. The X1
Newton’s second law leads

dZ
m— —k(xz—xl) kxq
k k

dzx
M-

= k(X1 — x2) — kx; two degrees of freedom

If we express the equations of motion in a matrix form, we get

e R T e R O [ B it [ R

u .
To calculate the natural frequencies (eigenvalues) of this system, we let [ ] [uﬂ et and insert this solution to
the above equation, we obtain

—mw? + 2k —k

[—mwz + 2k _
—k —mw?® + 2k

=0 —_— ‘
—k —mw? + Zk] u



Mechanical Vibrations of a Two-Body System

If we calculate the determinant, we obtain the X
following characteristic equation:

1 X9
(mew? — 20 — k2 = 0 @ @
k k k

The eigenfrequencies are then given by

2k + k two degrees of freedom

Cl)i:

\ m

If we insert this to the eigenvalue equation, we obtain the following eigenvalue-eigenvector pairs.

k 1 3k
o=l L=l | | eem [R5l
symmetric eigenmode for the asymmetric eigenmode for the

smaller eigenfrequency larger eigenfrequency



Research Example of Mechanical Vibrations of a Two-Body System
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Coherent phonon manipulation in coupled mechanical resonators, Nature Physics 9, 480-484 (2013)



Mechanical Vibrations of a Many-Body System: Wave

Ui—1 U; Uit1

k k k k

>
X a

What about if we have an one-dimensional, infinite array of mass-spring systems? Here, note that we

introduce a new parameter a which is the lattice periodicity (the size of a unit cell). Let’s write down the equation of

motion for this system. In this case, since the periodic nature of this system, we only need to consider the
dynamics of a mass in a unit cell. The equation reads

d?u;
dtzl = k(Ujpq —uy) + k(ui— —u;)

m



Mechanical Vibrations of a Many-Body System: Wave

What this equation implies for with the spatial information? iu” iui iu”l

Let’'s do some approximation to the equation. @ . @ 3 0 A @ h @ /
u; =u(x,t) U =ulxtat) x I a ‘

If we insert this to the equation of motion, we obtain.

2
m 0 L;S;' ) =klu(x+a,t) —ulx,t)] + k[u(x —a,t) —u(x,t)]

If we describe u(x

a,t) using the expansion up to the second order with respect to x, we get

ou(x,t) a?d?u(x,t
u(xta,t) =ulxt)+a ( )+ (. £)

0x 2 0Ox* wave velocity!
If we insert this expression to the equation, we indeed obtain the famous wave equation!! /
d%u(x,t) 2 0%u(x,t) d%u(x,t) , 0%u(x,t) , k.
= Kka > =C C"-=——aa
ot dx? dt? dx? m




Mechanical Vibrations of a Many-Body System: Wave

Ui-1 U; Uit1
If we insert a plane-wave solution to the wave equation, 0 i i i @
k k k k k

u(x,t) = ugel (@¥~@t) I ‘

X a

We obtain the following (dispersion) relation for the angular frequency w and
the wave vector

w = cq

So we now understand that this infinite array of masses can support propagating wave which can be described by
the wave equation with linear dispersion relation.

However, we also know that we did some (continuum) approximation and the equation does not fully capture the
behavior of this system with discrete nature. To see the discrete effects, let's consider the equation of motion again.

d?u;
dtzl — k(ui+1 — ui) + k(ui—1 — ui) ‘B/|0Ch theorem!

. Ta(ia)— . +j
Here, we can use a form of the solution, u; = quJ[Q(la) @t] \which leads to Ujp1 = ujetl9%
Inserting these to the equation of motion, we get

m



Mechanical Vibrations of a Many-Body System: Wave

dzu- Uj—1q U; Uit1
m dtzl = k(w41 —u;) + k(uj_qy —u;) (m) (m) (m) (m) (m)
k L k l k k k
X a

—Mmw? = k(ejqa — 1) + k(e‘jqa — 1)

. . a
mw? + k(e/9% + e7/9% — 2) = mw? + k(2 cos qa — 2) = mw? — 4k sin2 1= — 0

2
In the end, we obtain the dispersion relation for this one-dimensional monatomic system as
. A
forbidden frequency
, 4k .qa region .
W* = —SIn“ — oo X
m 2 m

2 ~ ﬁ ﬂ 2 . E 2 2 9 9 Long wave approximation,
~ ——aq =cq when ga<<1

-ma da G




Waves in a One-Dimensional Latlice with Two Bodies in a Unit Cell

Uj_1 Vi-1 U; Vi Uit
k k k k k
>

X a

What about if we have two masses in a unit cell of an one-dimensional, infinite array of mass-spring systems?

Let’s write down the equations of motion!

d?u;

m dtzl = k(v; —u) + k(vi—1 —u;)
d?v;

M—— = k(uj41 — vp) + k(u; — v;)

dt?



Waves in a One-Dimensional Latlice with Two Bodies in a Unit Cell

Here, the solutions we will use are

ul — uoej[q(ia)_wt] vi — erj[CI(ia)_wt]

— +j — tjqa
Uiy = ue™’4° Vit1 = vie=/1

If we insert these solutions to the equations of motion, we obtain

—w?muy = k(vy — ug) + k(vee™79% — uy)

_(,l)ZMUO — k(qujqa — vo) + k(uO — vo)

In a matrix form, we can express the equations as

_“62’" —a)ZM] ol = [k(l + eJaa)

We can easily notice that because the characteristic equation is a 2 x 2 matrix equation, we will have two
dispersion curves.

k(1J:e —Jqa )“

vo)



Waves in a One-Dimensional Latlice with Two Bodies in a Unit Cell

Vi1 U; Vi Ujtq

If we obtain eigenfrequencies and eigenvectors by solving
the characteristic equation,

w?m—2k  k(1+e79%)] u,
. ) NEX
k(1+e/9%)  w?M -2k [Yo
If we insert these solutions to the equations of motion, we obtain
(w?m — 2k)(w?M — 2k) — k?(1 + e7/9%)(1 + €/9%) = 0
mMw* — 2k(m + M)w? + 2k*(1 — cosqga) =0

1 1 4k? qga
Y= 2k(—+—=)w?+——sin> =0
W <M+m>w +mM51n >

SIS U AT 1+12 4 qa
Cr =\ u m/) M m mM° 2




Waves in a One-Dimensional Latlice with Two Bodies in a Unit Cell

A

w

H

m m

1 1 1 1\ 4 . 5,494
— k M_I__ ikV M+— —m—MSln ) phononic|band gap

Eigenvectors for acoustic branch (symmetric) optical branch

) )
A MR AN - |
k ‘ k k | k k acoustic branch

X a

-7da da 9
Note on phononic band gap:

Eigenvectors for optical branch (asymmetric)

4= * no eigenmode exists

[
« waves at the frequency within the
0 0 0 0 0 band gaps cannot propagate inside
k k k k k

‘ | the system, but reflected.

X a



Research Example of Waves in a One-Dimensional Lattice

Experimental Numerical

Frequency (MHz)

« V;: Tuning voltage Number of unit cells: 120

* V,c : AC excitation voltage
* Vpc: DC voltage

R T:".'.""" o ‘>7
f’ —— == :__.‘_— l’/-"_!_ _.',__—-—_- ’___._._:: ﬁ
= - PSS N

2 = . % =
/{ —— - T.‘i._-;[_ o _‘.’.——_—--_)\ §

Wavevector g Wavevector g

SiNyk Au/Cr SiO2 Silicon

; i " Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz
|SO'[I’OpIC HF etchi ng of thermal SIO 2 frequencies, Nature Nanotechnology 13, 1016-1020 (2018)



Research Example of Waves in a One-Dimensional Lattice
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Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz
frequencies, Nature Nanotechnology 13, 1016-1020 (2018)



Waves in a Multi-Dimensional Lattice: Phononic Crystal

Wavevector, k

Nature 503 209-217 (2013)

In general, periodic mechanical systems can be arranged in two- and three-dimensions. Such mechanical systems
have received great attention due to the possibility of controlling elastic and acoustic wave propagation in desired
ways.

Phononic crystals and metamaterials designate such kinds of mechanical systems nowadays and provide a
wide range of opportunities for engineering mechanical waves with many design parameters such as crystalline
symmetries, unit cell architecture, the properties and compositions of constituent materials and so on.



Waves in a Multi-Dimensional Lattice: Phononic Crystal

Frequency

ource :
requency : 50 Hz
- Horizontal displacement : 14 mm

Nature 462, 78-82 (2009) Phys. Rev. App. 6, 064005 (2016) JMPS 112, 577-593 (2018) Phys. Rev. Lett 112, 133901 (2014)

Dimension



Waves in a Multi-Dimensional Lattice: Crystalline Symmetry

sguare lattice

triangular lattice  honeycomb lattice

kagome lattice

basis vectors:

a V3
a = ax a1=§5€+7?
_— AN _— a/\ I3/\
a, = ay a2=—§x+7y



Waves in a Multi-Dimensional Lattice: Reciprocal Space

« To study waves in a periodic structure, we analyze its dispersion relation (frequency-wavelength relation) in a
reciprocal space or wavevector space.

» When studying mechanical vibrations, we analyze the responses of mechanical systems in frequency domain
which is the reciprocal space of time domain.

« However, since a spatial domain can also be two- and three-dimensional unlike time domain (which is one-
dimensional), a reciprocal space has the same dimension with that of a space domain.

« Lattices in real space have various crystalline symmetries, so we have to find proper reciprocal space to study
the behavior of waves in the lattices.

— —
b b, R —
bz bl
o B B B
Brillouin o
Zone —
b,
A
irreducible b4
Brillouin : : : :
square lattice triangular lattice honeycomb, kagome lattice

Zone



Research Example 1 of Phononic Crystals

e W a — b/~
. + T E=——
) N N5
It é 3 é 4
! g 59|
y band structure  ~ 1 =l §’Z %
analysis 0l 0|
' Xk spaceM ' ' Xk spacci,w '
ulx +a,y) = u(x,y)et*« . a= 1100 um a= 800 um
v Bloch _perl?dlc b= 686 um b= 542 um
i(x,y + a) = ii(x,y)etkye  conditions! w= 97 um W = 96 um
t= 300 um t= 300 um

u(x,y) : displacement field

A phononic bandgap shield for high-Q membrane microresonators, Applied Ph
ysics Letters 104, 023510 (2014)



Research Example 1 of Phononic Crystals
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We will see later how this is related to

guantum technology

A phononic bandgap shield for high-Q membrane microresonators, Applied Ph
ysics Letters 104, 023510 (2014)



Research Example 2 of Phononic Crystals
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at the Niels Bohr Institute

In this research, they realize a phononic crystal in a highly stressed silicon nitride nanomembrane
(6~ 1.27 GPa) and utilized the phononic band gap to achieve ultra high-Q mechanical resonator

(Q~10°)

Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution
, Nature Nanotechnology 12, 776-783 (2017)



Research Example 2 of Phononic Crystals
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Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution

, Nature Nanotechnology 12, 776-783 (2017)
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Simulation of Phononic Crystals using COMSOL

Step 1. Design the geometry and define your primitive unit cell of the lattice and define the material pr

operties
C 1
/%— Q l
[
Plate with a resonator Top view Side view

Step 2. Mesh generation: discretization of your system, constructing mass and stiffness matrices




Simulation of Phononic Crystals using COMSOL

Step 3. Apply the Bloch periodic conditions(select Floquet periodicity in COMSOL)
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Simulation of Phononic Crystals using COMSOL

Step 3. Apply the Bloch periodic conditions(select Floquet periodicity in COMSOL)
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Simulation of Phononic Crystals using COMSOL

Step 4.

Solve the eigenvalue equations for different wave vectors(at the boundary of irreducible BZ)
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Simulation of Phononic Crystals using COMSOL

Step 5. Plot your dispersion curves and analyze mode dynamics!
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Let’'s Do Some Quantum from Now On



Quantum Mechanics of A Single-Mode Mechanical Resonator

A time-independent Schroedinger equation reads

Ap(x) = Ep(x)
) ] YOO dx = 1

H'. Hamiltonian operator k
l/)I wave function(eigenfunction) |f/’(x_)|23 the probability of

finding the particle at

point x

E. energy(eigenvalue)

Recall the Hamiltonian for the mechanical oscillator p = mvy. momentum operator

2 X. position operator

H = 1mvz + 1kx2 =—+ 1mwzx2
2 2 2m 2 k = mc?: spring constant

w. (angular)resonant frequency



Quantum Mechanics of A Single-Mode Mechanical Resonator

Hi(x) = EY(x)

A2
P 22 w0 = Epeo
2m 2
If we define new operators
1
at = (—iﬁ + ma)p’c\) creation operator
a = 1 (lﬁ + mwXx) annihilation operator
V2hmo (A E)

HY(x) = hw (&Td + %)1/)(90 = EY(x)

Phonon:

Phonon is a quasiparticle(Z 21 X
which represents a quantized
energy unit of mechanical vibrations
and waves. It is like photon for
electromagnetic waves.

Ex) we have many phonons in a
mechanical resonator => the energy
of a mechanical resonator is high.




Quantum Mechanics of A Single-Mode Mechanical Resonator

~ at  creation operator
Hy(x) =EP(x)| o

a annihilation operator
. 1 1
H = hw aTa+E E = hw n_|_E

Hamiltonian for a single-mode

mechanical resonator

Xzpf = |5
\ 2Mmw

Energy of a single-mode
mechanical resonator

zero-point fluctuation

ho .- *I““ 7

ho/2

W (x)

W ()

W)

Bl W, (X)

Y, (x)
Y (x)
W, (x)

Y (x)

X




Thermodynamic Aspects of A Single-Mode Mechanical Resonator

« Bose-Einstein Distributions: A distribution that shows the average number of particles that occupy a
guantum state. Also called the occupancy of the quantum state.

h : Planck’s constant

1 f; resonant or mode frequency
n =
hf .
ekBT —1 kB- Boltzmann constant
T: Temperature
hf
« The exponent ——— isthe mostimportant indicator that informs us of whether a system behaves

kgT
guantum mechanically or not.

o If hf K kBT: n > 1 — Thermal energy(noise) excites the system. A system behaves classically.

. hf > kB T, n«Kil — No boso_n exists in the system. The system is in the quantum grou_nd
state or is quantum vacuum. A system behaves quantum mechanically.



Thermodynamic Aspects of A Single-Mode Mechanical Resonator

« Let's look at the Bose-Einstein distribution for different temperatures and frequencies. n = hfl
eksT — 1
10 10
f
8 8
L 2 L f = 100 MHz
§ .0 5.0 Note:
f = 1000 MHg Superconducting
2+ 2 .
_ / quantum devices
single [ N | | | A E— operate at mK
phOnOI’l 0 (l) | |20|00| 2000 6000 8000 Ii.D[I)DG O |1|0| T E N I4|r_)I = I5|DI temperatures!

Frequency (MHz) Temperature (mK)

* The occupancy decreases as the temperature decreases at the same resonant frequency.
« The occupancy decreases as the frequency increases at the same temperature.



Thermodynamic Aspects of A Single-Mode Mechanical Resonator

Examples) Calculate the phonon occupancy of two different nanomechanical systems oscillating at different

resonant frequencies at 20 mK.

Graphene nanomechanical resonator f ~20MHz

Suspended
graphene

J. S. Bunch et al. Science 315, 490-493 (2007)

1 1
n= hf - (6.626x10734]-5)(20 MHZ) ~ 20
ekBT —1 o (1.38x10723J/K)(20 mK) _— 1

There are 20 phonons thermally created!
=> The thermally excited mechanical resonator has
its energy corresponding to 20 phonons!

Silicon Phonon Cavity f ~3 GHz
() . 0 1

1 um

(f)
EEEEEEEXEXEEE R N B B & & |

J. Chan et al. Appl. Phys. Lett. 101, 081115 (2012)

1 1
n= hf - (6.626x103%]-5)(3 GHZ) ~ 0.0007
ekBT —1  (1.38x10723J/K)(20 mK) — 1

There are almost no phonon in the system!
=> The mechanical resonator are now in its quantum
ground state!



Quantum Mechaics of A Single-Mode Electromagnetic Resonator

< We start from the well-known Maxwell’s equations.
L Note that there is no charge or current source that
provides additional electric or magnetic fields.
% ﬁ . .
V- E=0 E': electric field
ﬁ
ﬁ
V-B=0 B: magnetic field
| | = dB
an optical cavity(Fabry-Perot type) VXE = —— 1Ly vacuum permeability
made of two highly reflective mirrors at . 0
— OE .
VXB = Ho€o E goj vacuum permittivity
Remark) Optical cavities are essential components

for cavity quantum electrodynamics(cavity QED)
and thus quantum information science!




Quantum Mechaics of A Single-Mode Electromagnetic Resonator

From the four Maxwell’s equations, we derive the wave equation for electromagnetic waves in vacuum.
This reads

%
= 1 0°E 1
V°E = with C = * the speed of light

2 9t2 VHo&o

Assume that the electric field is linearly polarized in z-
direction as in the figure and the propagation direction
Is parallel to x-direction.

The total energy of the electromagnetic field contained
In the cavity is given by |

U—lf E2+B§ dV




Quantum Mechaics of A Single-Mode Electromagnetic Resonator

. | Ho<o .
fwelet F, = q(t) sin k., we obtain By = — . q(t) cos kx
Note that we use {/ X § — ,Lloé‘oa—ﬁ-
ot ,
If we insert the electric field and the magnetic field into the energy equation, [J = —f (SOEZZ -+ _y) dV
we obtian 2 14 Ho
2 2
gV |q=(¢t) p 1
U= + g%(t)| = — + =mw?q?
2 ez T W] =5 Fome -—
oV
Here, we define a momentum p = mq with M = —
w

The form of the equation remind us of the energy of a single-mode
mechanical resonator!




Quantum Mechaics of A Single-Mode Electromagnetic Resonator

Therefore, electromagnetic waves behaves like mechanical resonators in quantum mechanics and their
guantization is called photons. So all the quantum mechanical definitions of the mechanical resonators
are also valid for photons.

—~ 1 &1' creation operator
H=hwl|a%a+= " -
2 a annihilation operator
1 .
n=—p= hw
= X =
eksT — 1 22 \ 2V e,
1

Thermal Occupancy zero-point fluctuation 2




Quantum Mechaics of A Single-Mode Electromagnetic Resonator

There are many types of optical cavities such as free-space optical cavities, whispering gallery mode optical
resonators, and photonic crystal cavities.

60 um . ae

— — e~

Wikipedia D. K. Armani et al. Nature 421, 925-928 (2003) J. Riedrich-Moller et al. Nat. Nanotechnol. 7,
69-74 (2012)

A free-space optical Whispering gallery mode Photonic crystal cavity
cavity. This can be used optical resonator. This can resonator. This can be used
to trap particles and be used to generate optical to study cavity QED with NV
neutral atoms. frequency combs. centers and cavity

optomechanics.



Quantum Mechaics of A Single-Mode Electromagnetic Resonator

Obviously, microwave resonators follow all the definitions of quantum harmonic oscillators we discussed
so far. There are many types of microwave resonators we can realize such as coplanar waveguide cavity,
3D microwave cavity, and LC resonators.

coplanar waveguide
microwave resonator

for qubit measurement. LC resonator for

superconducting
: nanoelectromechanics

A. Wallraff et al. Nature 431, 162-167 (2004)

J Cha, et al. Nano Letters 21, 1800-1806 (2021)



Thermodynamics of Eleciromagnetic Waves

Examples) Calculate the occupancy of two different electromagnetic resonators with different resonant

frequencies at 300 K(room temperature).

Superconducting Microwave Resonators f ~7 GHz

[ & L |
O (@] R e =
A. Wallraff et al. Nature 431, 162-167 (2004)
1 1
n= hf  (6.626%10734]-5)(7 GHZ)
ekBT — 1  o(1.38x10723]/K)(300K) — 1

There are 892 photons thermally created at the room
temperature! That's why we have to operate
superconducting quantum devices at mK temperatures!

~892 n=—pr——=

Optical resonator f ~193 GHz

$ ”l
ot e 3, - - Xz
T R ey = e i
3 Sy S i",,._;a-al_»‘*;».~--*_‘~ﬂ. ”"* r‘.’
e 3 S e e e T S ¥

B R e A W

e e R e -
=Nt e SN S

D. K. Armani et al. Nature 421, 925-928 (2003)

1 1

(6.626x10734]-5)(193 THZz)
e (1.38x10723J/K)(300K) _ 1

~ 4(1071%)

efsT — 1

no photons in the system! The system is in its quantum
ground state. That's why photon-based quantum
experiments can be realized at the room temperature!



Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime

Optical and Mechanical Resonators Examples: 2D Nanomechanical Resonators

Mechanical
oscillator

vs)

Red laser
oooo
oooo

Network analyzer

Dichroic
BS

¥ |

oo
Blue laser ©0) oo
- ‘ 8o

@ Spectrum analyzer

BS

Lens

Jaesung Lee et al. Science Advances eaao6653 (2018)

To b
photodiode

displacement of the
mechanical resonator (dx)

J i

intensity change of the
reflected light (da)

Amplitude

dx

T. J. Kippenberg, Cavity Optomechanics: Back-Action at

the Mesoscale, Science 321, 1172 - 1176 (2008) R. De Alba et al. Nature Nanotechnology 11, 741-746 (2016)



Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime

optical mechanical
: ' de
coupling) laser sy i
( p g) Weav, K -Qma Fm

Input Forces Wes nanical Optical Position
dF n Oscillator Transduction do.
dFF — dzxldxr — da =

ag
Meaksurt?ment Quantum Noise
Backaction + do,;,
(87

dFRp — d

Review of Modern Physics 86, 1391 - 1452 (2014)

Cavity enhanced photons exert forces (via the
radiation-pressure) to the mechanical resonator

The consequent motion of the mechanical
resonator perturbs the optical cavity

Due to the cavity perturbation, the forces applied
by the photons change.

H = hw.ata + hQ,,bTh — hgoata(bt + b)

photon phonon interaction

Optomechanical interaction leads to uncertainties
in interferometric measurement

But we can also exploit this to control the
behavior of mechanical resonators or the
behavior of light.



Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime

——— = - s i 2 3 5 -
B Za
- __,ﬂ-'

—

LIGO: Laser Interferometer Gravitational-Wave Observatory




Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime

LIGO - A GIGANTIC INTERFEROMETER

ORAVITATIONAL WAVE DLACK HOLE SPACETIME

. | N * Noise from the light source (e.g. shot
MIRROR / T .'\ The light MIRROR nOISE)

waves bounce
and return:™

« “Back-action noise” originating from
mechanically perturbed mirror due to
A “boarm spliter” split the the radiation pressure of the light.

Light and sends out two
identical beams along the
4 Km long arms

" Aincden. oy

[ prteny el sile « The precision of the measurement is

N interferometer's arms differently;
Laser light is sent into when one extends the other contracts . . . - -
the instrument to l\\ . as they are passed by the peaks and I” I "ted by the IntenSIty Of the ||ght a.n
measure changes In - SO troughs of the gravitational waves . .
the length of the two S d the back-action noise.
arms = Normally, the Lght returns unchang
od to the beam sptitter from both
arms and the Light waves cancel

each other out « Optimal intensity of light compromisi

4 XXX) I ng the two effects needed to be find.

BEAM SPLITTER LIOHT DETECTOR

If the arms are disturbed by a P T wa r

: b "8 LIGHT WAVES H!I
gravitational wave, the Light waves %%%M §
e Sebrib bbb - ol THE LIGHT DETECTOR
will have travelled different distan-
cas. Light then escapes through the BEAM SPLITTER LIGHT DETECTOR
splitter and hits the detector

IHlustration: ©Johan Jarnostad/The Royal Swedish Academy of Sclencoes



Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime

Nature 460, 724 — 727 (2009) Nature 452, 72 — 75 (2008) Nature 472, 69 — 73 (2011)

cryostat I
=
g

atwark I
analyzer
o 3"190_

Science 349, 952 — 955 (2015)

Nature 482, 63 — 67 (2012)



Infroduction to Cavity Optomechanics (Some Mathematics)

laser in <

ﬁ
h

laser out
a’ a)C’ K \
/ mechanical

annihilation operator
for cavity photons damping rate

a resonant frequenc .
q y cavity loss rate a resonant f_requency of
the mechanical resonator

of the optical cavity
annihilation operator for
nanomechanical phonons



Infroduction to Cavity Optomechanics (Some Mathematics)

L
. . ) laser in
Based on the formalism we discussed so far in the —
theory section, we begin with a Hamiltonian
laser out
=5 _ /\'I‘ A A'I‘ 1 ar W, K
H - hwc (x) a' a + h me b annihilation operator4/_,,,,./-—'—'-—"-"""”"”'"/—f - . mechanical
for cavity photons //// damping rate
Here, we note that the resonant frequency of the a resonan! frequency Cavitylo‘ss ate \ “a resonant frequency of
cavity depends on the displacement of the ot the opfical cavity annihilation operator for ¢ TeCenical resonator
mechanical resonator. nanomechanical phonons

If we approximate (. (x) using the Taylor’s expansion up to the first order, we will have

dw,
dx

I

This term describes the change of the
optical cavity frequency when there is a
mechanical displacement

w.(x) = w.(x =0) + X

A resonant frequency of the optical
cavity when there is no mechanical
displacement



Infroduction to Cavity Optomechanics (Some Mathematics)

If we insert the approximation to the Hamiltonian equation, we get

H = hw.(x = 0)a’a + hQ,, arta

dx

If we describe the displacement in terms of the creation (b1) and annihilation operators (b) of phonon, we can
express x as in the following:

—
h

X = Xgpp(bT +b) W Xzpp = J2me

If we use this formula, the Hamiltonian then becomes

= how.(x = 0)ata + hQ,,

dx

vacuum
optomechanical
coupling rate




Infroduction to Cavity Optomechanics (Some Mathematics)

Example) Calculate the single-photon optomechanical coupling of an optical cavity-mechanical resonator
system shown below. Parameters are given in the following.

a I— Parameters: m = 145 ng
N, =2m X947 kHz
L=25mm
w, = 2m X 282 THz (~1064 nm)
Taylor's expansion
Solution) For Fabry-Perot cavity, /
L x\ 1 X
wc(x) = mwc,x=0 — (1 + Z) Wex=0 ~ (1- Z)wc,x=0
_ 9, _exso | Mo 079
9o = Ty tmr T J2man, nt eI

Nature 460, 724 — 727 (2009)



Infroduction to Cavity Optomechanics (Some Mathematics)

dw
C
fwelet Yo — — dx Xzpf , and write the Hamiltonian considering an external drive field (note that the

optomechanical interaction can only be realized when there is an external drive), we reach

H = hw (x = 0)ata + a0, bTh — hgo(bt + b)ata + Hyrive
optomechanical interaction
with ﬁdrive — ihain\/ Kext(aTe_iwdt + aeiwdt)

P |

Laser intensity coupling rate to cavity  laser drive frequency

To remove the time-dependent term, we consider the Hamiltonian in a new frame rotating at the drive laser

frequency @ g4, by applying the unitary transformation with [7 — eiwd&T&t_ The new Hamiltonian is given by

)
)

Hyew = UHUT — ihUAUT /0t



Infroduction to Cavity Optomechanics (Some Mathematics)

By taking one more approximation called linear approximation a = A /nc —+ é\l,

we obtain the optomechanical Hamiltonian as in the following:
H = —nAata + aQ,bTh — hggyme(at + a)(b' + b)
« We neglect the driving terms and other small terms for the simplicity

« Here the most important term is detuning A = Wgqg — We which denotes the difference between the

driving frequency and the cavity frequency.

« Depending on the detuning, optomechanical systems exhibit t A
different behaviors and we will see in the following. @ A
* Here, J = gm/”l’lc IS general optomechanical coupling rate. é K
< —»] |—
This means that the coupling depends on the strength of the drive
field. >

wg  We Frequency



Infroduction to Cavity Optomechanics

Let’'s consider a Fabry-Perot cavity in the following figure. If the cavity is modulated by the mechanical motion, the
optical responses we measure using the detector shows the laser intensity oscillation at the frequency of the

mechanical resonator -Q'm- If we consider this modulation process in the optical spectrum domain, we can see

sidebands generated at OF -+ Qm and Wq — 'Q'm .
phonon absorption

Mechanical
IFpit Cavity oscillator g w + Qm
laser fr
5 w — S
Q _
W s ALLLLLLE = ‘
- - ‘
phonon emission %
e pEN .
dx PR S ——— -*

Phase/amplitude detector
Optical spectrum

T. J. Kippenberg, Cavity Optomechanics: Back-Action at the Mesoscale, Science 321, 1172 - 1176 (2008)

In cavity optomechanics, we manipulate this sideband generation process to achieve desired responses of systems.



Infroduction to Cavity Optomechanics (Optomechanical Cooling)

One of the representative phenomena we can realize using the optomechanical interaction is optomechanical

cooling.

When| A = Wg — W, = —.Q,m and -Qm >> K , optomechanical interaction creates a frequency sideband

only around the cavity frequency. This single sideband generation is related to phonon-absorption process. This

means that we reduce(or cool down) the energy of the mechanical resonator using optomechanical interaction.

The Hamiltonian then becomes remove phonon

™

H = —nAata + nQ,, bTh — hgo@aTB +abT)
A

create cavity photon

This regime is called red-detuned regime as the driving
laser frequency is smaller and this operation leads to cooling

of ‘hot’ thermal phonons to ‘cold’ cavity photons.

Amplitude

drive laser

signal

W q

W,

cavity resonance
spectrum

mechanical sideband

>



Infroduction to Cavity Optomechanics (Optomechanical Amplification)

Another representative phenomena is optomechanical amplification.

When

A:C()d—C()C:.Q.m

and -Qm >> K , optomechanical interaction creates a frequency sideband

only around the cavity frequency. This single sideband generation is related to phonon-creation process. This

means that we increase(or amplify) the energy of the mechanical resonator using optomechanical interaction.

The Hamiltonian then becomes

H = —nAata + nQ,, bTh — hgo@aTBT +a

create phonon

™

S

)

cavity resonance

create cavity photon spectrum

Q

S A =

=
This regime is called blue-detuned regime as the driving = | mechanical

: : . S i
laser frequency is larger and this operation leads to < sideband \
amplification of phonons. drive I|aser
signa
>




Research Example of Cavity Optomechanics

: . Laser
a :
RFSG WM
RSA
FPC
EOM D2
LIA
EDFA £\
Cryostat

bhononic band'gapshield AT

.. %
radiation loss to the . : : — :
. e & ',_ z X
bulk is suppressed! 10% 8 5 3 ] 7088
052
-30-15 0 15 30 AN
(Ag - o)1 (MHz2) -0 0 10
| = Y | 1 03 I i (@ - w,)2r (MHz)
——F engineering - iy
EL ' . =
> o phononic band gap 8 %o
e e : = ~165f " -780 )
S | for high-Q resonator %160 ’ + %0,
102k E 1 E1.55 \ ]
~ 3 o L o 1.50 \
] : X € 1.45p L
,/ -200-100 0 100 200 \
. ’ (@ - o, )21 (kH2) \ .
/
107F /I N ' r . 0.1 ' L |
X M Tr5s 100 150 1 10 100 1,000 . 10 100 1,000
k b(nm) n, ng

Opt. Express 19, 5658-5669 (2011)
Laser cooling of a nanomechanical oscillator into its quantum ground state.

Nature 478, 89 — 92 (2011)



Hybrid Quantum Systems with Superconducting Microwave Circuits

féi p

Superconducting Microwave Circuit
Phys. Rev. Lett. 111, . Nano Letters 22,
080502 (2013) (microwave photon) 5459-5465 (2022)

superconducting qubit nanomechanical vibration
K (photon) j \ (phonon) j

Phys. Rev. Lett. 105
,140502 (2010)

V.

Phys. Rev. Lett. 122,
206802 (2019)

. spin waves
\ spin c(asnpsiir;bles j K gigaher(tzhelasti(): waves j \ quantum dots j K (Fr)nagnon) j
phonon

(charge)




Cavity Optomechanics with Superconducting Microwave Circuits

vibrating
capacitor T

microwave drive 1’

LC circuit

Review of Modern Physics 86, 1391 - 1452 (2014)

f
=== = -—

microwave out

microwave in

Superconducting nanoelectromechanical systems can
realize cavity optomechanical interaction via
microwave fields at GHz frequencies.

The reason why we are using superconducting
materials for such devices is that microwave loss
properties can extremely be enhanced as a
superconducting material has zero electrical resistivity
below its superconducting temperature.

Furthermore, as we discussed, mK environments
enable the quantum ground state of GHz microwave
resonators.

The system can easily be modelled using LC circuit
where the capacitance depends on the mechanical
displacement. Their coupling is realized by
electromechanical interaction where the voltage
applied to the capacitor leads to mechanical
displacement via electrostatic interactions.



Cavity Optomechanics with Superconducting Microwave Circuits

_ _ vibrating « The Hamiltonian describing this system is given by
microwave drive capacitor ““‘
" j 1 1 p? 1
T H==LI?+=-C(x)V? + — + =mQ2 x?
2 2 (%) 2m 2
microwave resonator i
| C circuit mechanical resonator
Review of Modern Physics 86, 1391 - 1452 (2014) C(.X') _ EOA for paraIIeI capacitor
(d + x)

« The Hamiltonian describes two-coupled harmonic
oscillators. If we express the Hamiltonian quantum
— W mechanically, we get

a1 =
microwave in

microwave out o R R
H = hw.a'a + hQ,,bth — hgoata(bt + b)

photon phonon interaction

_ Ow single photon optomechanical
Yo = 775 *#pf  coupling constant




Cavity Optomechanics with Superconducting Microwave Circuits

Example) Calculate the single-photon optomechanical coupling of a superconducting nanoelectromechanical
device shown in the below. Parameters are given in the following.

: Parameters: t =100mnm ; D =15um

k
Pa; = 2700m—g3; O, =21 X10.69 MHz
degp = 50 nm

L=12nH; C,_o=38fF

Solution) For LC circuit, the resonant frequency is

) 1 d+ x d(1+§) 1 (1+x)
W-\X) = = — ~ _
C /LCv(x) V LAEO 'V LAEO V LCX=O Zd
Jdw, (LCx=O)_O'5
9o = TGy tars 2d |2ma, T x 300 Hz

J.D. Teufel, et al. Nature 471, 204-208(2011)



Cavity Optomechanics with Superconducting Microwave Circuits

a d e
network rf signal spectrum
o analyzer @| |@generator analyzer g 04 @, =2r x3.777 GHz
@p S g Sw) S K =27 x 960 kHz
k7))
R
® ] E 0.2} K
a (2}
o= Q C
© @ 3 ©
_g& 20 dB 2 b
2048 [Y [2S o -
2 0 : 1 :
40 dB . =~ 3.771 3.778 3.785
I:.b:| = = Frequency (GHz)
o|lo a
al2 = f
=ls IE
S & < 125F Q=27 x 8.369 MHz
= T
S [, =27 x 810 Hz
S 100
g
| |
| T I 3 # I3 g 75
T _ @
= 2 50f
L L L L 1 l L L 1 1
4.2 K 8.36 8.37 8.38

Frequency (MHz)

J Cha, et al. Nano Letters 21, 1800-1806 (2021)



Cavity Optomechanics with Superconducting Microwave Circuits

Optomechanical Cooling

Qp,
— — FT
(g (D¢

z 10-28
10728 pis

10-29

10-30 F 10730

S(w) (m?Hz)

10-31
F 10731

10732

8.364 8.369 8.374 8.364 8.369 8374
Frequency (MHz) Frequency (MHz)

2
oo dw o\ _ kpT _ 2KkBTXzpf
A= [ Sx(w)— = (x%) = = =2N,p X5

The Hamiltonian is

~

H = —nAata + hQ,,bTh — hggymg(ath + abt)

Broadening of mechanical noise spectrum.
=> optomechanical damping effect.

Decrease of the area of the Lorentzian curve
=> Reduction of the energy of the nanomechanical resonator.
=> Reduction of the phonon number

mn2, AQm zpf
-1
tn =P ) T The, T R

J Cha, et al. Nano Letters 21, 1800-1806 (2021)



Cavity Optomechanics with Superconducting Microwave Circuits

Ground-State Cooling: Quantum Mechanics with Macroscopic Objects

a c [
LN ] LN J
. . . . ("dl ? a l b 1013 F
@ B = | n_ =27 F n,=4,500 | n_=0.93
(I L — | - A=18 4 e — u
LI L 300 K E 1y = 71 n, =22 [ ny=11,000 n, =055
C T L, s e
am Ha - F F=
(W | BN N 10“30-E-—nd=280 n,=85 IE - | ny=28,000 n,=0.36
NE B \; E e P
[ N | N 2 4K et [n,=1,100 n_=29 5 C
A | 0 | 4 S 1031 [ n, =89,000 n, =034
= B o SR DS
:nd =4,500 n.= 0.93 B ng= 180,000 g/n n.,= 0.42
102 | | 1015 = | | | | |
10.556 10.558 10.3 10.4 10.5 10.6 10.7
Frequency (MHz) Frequency (MHz)
¢ 102
EIIIIIIIxxts‘..‘.o..
- ‘e
1 ..°.
- 10 E ®n, e
é .nc .....
e} 100:———-—-—---———--—--—----——--—-'-'—-'--—'-——-----—'-‘—x;: ----------------
!Iliii;%izii
()
oL HPIIHHIHIIHHH
J.D. Teufel, et al- Nature 471’ 204-208(2011) ':-llll llI 1 1 1 IIII¥II}{I{ 1 1 Illll 1 11 llllll | kKL Illlll
100 10! 102 103 104 108

« Ground-state preparation for quantum applications
* Quantum-limited position and force detection

Drive photons, n

J.D. Teufel, et al. Nature 471, 359-363 (2011)



Cavity Optomechanics with Superconducting Microwave Circuits

Ground-State Cooling with Phononic Crystals

= 140 -
0
o =
= m
1o
73 g —150 A
- % % data
=&
S —160 — fit
Albert ser Group = , ,
at the Niels Bohr Institute 0 200 400
Time (s)
g 10° : -
B ] | ] [ ||
§/§10“-; " g3 U : " o = C I | il
SE ’ ?
S F 10’ ®
= - to
S 1 m  Dbathny, * o 4 0 5f®
~- mu_é ¢  occupation n I* *

T T T T T T
50 —40 30 20 10 0 10
Microwave source power (dBm)

Ground state cooling of an ultracoherent electromechanical system. Nat
ure Communications 13, 1507 (2022)




Cavity Optomechanics with Superconducting Microwave Circuits

Optomechanical Amplification

S(w) (m?Hz)

8.364

1
8.369
Frequency (MHz)

8.374

Dirve Photon Numbers

8.369
Frequency (MHz)

10-27

10-28

L 10-29

The Hamiltonian is

H = —nAata + hQ,,bTh — hggymg(atbt + ab)

Narrowing of mechanical noise spectrum.
=> optomechanical anti-damping effect.

Increase of the area of the Lorentzian curve
=> Increase of the energy of the nanomechanical resonator.
=> Increase of the phonon number

2
oo dw o\ _ kpT _ 2KkBTXzpf
A= [ Sx(w)— = (x%) = = =2N,p X5

mn2, AQm zpf
-1
tn =P ) T The, T R

J Cha, et al. Nano Letters 21, 1800-1806 (2021)



Cavity Optomechanics with Superconducting Microwave Circuits

Phonon numbers and Effective Temperature
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J Cha, et al. Nano Letters 21, 1800-1806 (2021)



Cavity Optomechanics with Superconducting Microwave Circuits

Optomechanical Control of Microwave Transmission: Optomechanically Induced Transparency
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J Cha, et al. Nano Letters 21, 1800-1806 (2021)



High Frequency Acoustic Resonators Coupled to Superconducting Qubits

c~4000 m/s for LINbO;
| | p~ 400 nm => ~5 GHz

,/ | Direct
surface acoustic wave resonators Coupling to
fabricated at KRISS microwave
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High Frequency Acoustic Resonators Coupled to Superconducting Qubits

The Jaynes-Cummings Hamiltonian can also be
used to describe qubit-phonon interactions

hw
Hjc = hQpata + —a, + hg(ato_ + do,)

2
Complte devi (two C | () /
i l « Hamiltonian for the
microwave resonator e qubit-phonon
Interaction
* w, denotes a photon .
Qubit [ Resonator frequency v Hamlltonlan
Readout e e H lltonian for the SC
—'—rl—cu - = amiitonian forthe g denotes the
e Coupler l 1 H . ]
o Z.P e qubit when approximated qubit-photon
Coupler flux bias, B/, as a two-level system coupling

* w, denotes the qubit
frequency

Quantum control of surface acoustic wave phonons, Nature 563, 661-665 (2018)



High Frequency Acoustic Resonators Coupled to Superconducting Qubits
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« Surface acoustic wave phonon can be coupled to
superconducting qubits via piezoelectricity

* In this device, the coupling between phonon and
qubit is tunable via a coupler

Quantum control of surface acoustic wave phonons, Nature 563, 661-665 (2018)



High Frequency Acoustic Resonators Coupled to Superconducting Qubits
A
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Quantum acoustics with superconducting qubits, Science 358, 199-202 (2017) Resolving the energy levels of a nanomechanical oscillator, Nature 571, 537-540 (2019)



Quantum Transducer: Conversion of Microwave to Optical Signals

a SC qubit Mechanical resonator Optical resonator Optical fibre c
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Oskar Painter group at Caltech has recently shown that a superconducting qubit can be measured using

optical photons
Superconducting qubit to optical photon transduction. Nature 588, 599-603 (2020)



Quantum Transducer: Conversion of Microwave to Optical Signals
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Superconducting qubit to optical photon transduction. Nature 588, 599-603 (2020)



Quantum Transducer: Conversion of Microwave to Optical Signals

The pulse sequence for quantum transduction
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Superconducting qubit to optical photon transduction.
Nature 588, 599-603 (2020)



