The 13th School of Mesoscopic Physics: **Mesoscopic Quantum Devices**

MAY 23 ~ 25, 2024 | POSCO International Center, POHANG, KOREA

What you should know about RF measurement

Jaseung Ku

Center for Superconducting Quantum Computing System Korea Research Institute of Standards and Science (KRISS)

2024.5.23 @ POSTECH

The 13th School of Mesoscopic Physics: **Mesoscopic Quantum Devices**

MAY 23 ~ 25, 2024 | POSCO International Center, POHANG, KOREA

OVERVIEW

The "School of Mesoscopic Physics" is a meeting to teach graduate students the basic knowledge of mesoscopic physics and promote information exchange, scientific discussions, and collaborations among scientists. This year, the school aims to cover the topic of "Mesoscopic quantum devices." which has recently attracted attention

TOPICS

1. Mesoscopic theory 2. Quantum technologies 3. Topological materials

INVITED SPEAKERS

Seigo Tarucha (RIKEN) Christian Schönenberger (Univ. of Basel Jaseung Ku (KRISS) Myunglae Jo (Kyungpook Nat'l Univ.) Eunjong Kim (Seoul Nat'l Univ.) Sang-Jun Choi (Kongju Nat'l Univ.) Moon Jip Park (Hanyang Univ.)

ORGANIZERS

Hyungkook Choi (Jeonbuk Nat'l Univ.) Yong-Joo Doh (GIST) Minkyung Jung (DGIST) Seok-Kyun Son (Kyung Hee Univ.) Nojoon Myoung (Chosun Univ.) Hee Chul Park (Pukyong Nat'l Univ.)

REGISTRATION & CONTACT

https://www.apctp.org/theme/d/html/activities/activities01_read.php?id=2065 Registration Fee: free | Period for Registration: 2024. 04. 19 ~ 05. 19 Contact: sori.kim@apctp.org 054-279-8679 (Academic Support Team of APCTP)

Organized by The Mesoscopic Physics Society of Korea and Quantum and Nano Devices Research Society in Korea

PROGRAM

- 23 12:00 Registration
- 13:30 Opening Remark **MAY**
- (KST) 13:40 What you should know about RF Measurement (Jaseung Ku, KRISS, Korea)
	- 16:00 Fabrication Techniques for Quantum Devices (Myunglae Jo, Kyungpook Nat'l Univ., Korea)
	- 18:30 Banquet
	- 21:00 Free Discussion
- 24 09:30 Introduction to Superconducting **Quantum Devices**
- **MAY** (Eunjong Kim, Seoul Nat'l Univ., Korea) (KST)
	- 11:30 Group Photo
	- 11:40 Lunch
	- 13:00 1. Fundamentals for quantum computer 2. Advances in spin quantum computer (Seigo Tarucha, RIKEN, Japan)
	- 15:10 1. Search for the Fractional Josephson Effect 2. Qubits in nanowires (Christian Schönenberger, Univ. of Basel, Switzerland)
	- 17:20 A crash course in Quantum Transport **Theory: Coherent & Metallic Conduction** (Sang-Jun Choi, Kongju Nat'l Univ., Korea)

ogical Insulator and Superconductor

GIST | Quantum De

19:30 Dinner

25 09:30 Introduction to Topological Materials: **MAY** (Moon Jip Park, Hanyang Univ., Korea) (KST)

Ministry of Science and ICT

ary or columber and retwork for
id Quantum Systems and Interface

11:30 Closing Remark

Quantum Devices

The APCTP is supported by the Korean Government through the Science and Technology Promotion Fund and Lottery Fund and strives to maximize public value through its various activities.

Outline

Part I: RF/MW concepts and hardware

- What and why RF measurement?
- RF essential concepts
- RF Hardware
	- \checkmark Components
	- \checkmark Electronics

Part II: RF measurement applications in real experiments

- RF measurement technique
	- ✓"Measure" RF/MW
	- \checkmark Time-domain (pulsed) measurements
		- Creating RF pulse (Modulation, upconvert)
		- Measuring RF pulse (Demodulation, downconvert)
- Examples of RF/MW measurement in real experiments

Reference books

Introductory reference book for microwave engineering

- *E*lectronics reference book
- Cover both analog and digital

What is RF (Radio Frequency) & Microwave?

30 kHz – 300 MHz 10 km – 1 m λ

 \mathcal{C}_{0}

 $f =$

Microwave 300 MHz – 300 GHz $1 m - 1 mm$

[Ref: Wikipedia]

DC measurement?

Transport measurement

- Low frequency measurement
- Source frequency < 1 kHz
- Wavelength >> physical dimension
- Measured quantity: \checkmark V, I, R, dV/dI, ...
- Commonly used instrument
	- \checkmark Function generator (i.e., AC voltage source)
	- \checkmark DC voltmeter
	- \checkmark Low-frequency DAQ(Data Acquisition Board)
	- \checkmark Low-frequency lock-in

Q: What happens if the frequency of voltage source increases?

RF measurement?

- High frequency measurement
- Sensitive measurement
- Wavelength < physical dimension
- Measured physical quantity: \checkmark Frequency, impedance, phase, amplitude, …
- Commonly used instrument:
	- Signal generator, AWG
	- Oscilloscope, spectrum analyzer
	- Network analyzer (S-parameter)

RF measurements in quantum devices?

❖Quantum Computing & Quantum Sensing

- Control of qubit state
- Measurement of qubit state

Energy scales suitable for microwave (~GHz)

[de Leon et al., Science 372, 253 (2021)]

Essential RF/MW concepts

Transmission line

• Cable or structure that allows electromagnetic wave propagation

Schematic of transmission line

Transmission line theory

- Modelled by a infinite series of lumped-elements
- V(z, t), I(z, t) governed by two wave equations.

[Ref: Wikipedia]

Transmission line - continued

- Characteristic Impedance $(Z_0) = \frac{V^+}{I^+}$ I^+
	- \checkmark Ratio of voltage to current for a single traveling wave on a transmission line
	- \checkmark For a typical coaxial cable, $Z_0 = 50 \Omega$
- Voltage Reflection Coefficient (Γ)

$$
\Gamma = \frac{V^{-}}{V^{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}
$$

Reflection due to Impedance mismatch

$$
\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}
$$
\nFor $Z_L = 70 \Omega$, $Z_0 = 50 \Omega$,
\n
$$
\Gamma = (70 - 50) / (70 + 50)
$$
\n
$$
= 0.16 (-8.0 \text{ dB})
$$

- Impedance matching is necessary to minimize reflection(Max. power transfer)
- 20 dB (Γ =0.01) is a good number, i.e., $Z_L = 51 \Omega$

S-parameters

- In RF/MW measurement, consider 1) incident, 2) reflected and 3) transmitted waves.
- S-parameters define relation between them.

$$
S_{ij} = \frac{V_i^-}{V_j^+} = |S_{ij}|e^{i\varphi}
$$

• For 2-port network,

$$
S_{21} = \frac{V_2^-}{V_1^+} \rightarrow \text{ Transmission},
$$

$$
S_{11} = \frac{V_1^-}{V_1^+} \rightarrow \text{Reflection}
$$

• Network analyzer is used to measure S-parameters.

dB (decibel)

• dB (decibel) is **ratio of power in logarithmic scale,** i.e., **unitless**

$$
\left(\frac{P1}{P2}\right)(\mathsf{dB}) \equiv 10 \log_{10} \left(\frac{P_1}{P_2}\right)
$$

- Useful to compare large orders of magnitude
- Example: $3 dB \rightarrow P1/P2 = 2$ $6 dB \to P1/P2 = 4$ $10 dB \rightarrow P1/P2 = 10 (=10¹)$ 20 dB \rightarrow P1/P2 =100 (=10²)
- Convert multiplication to addition, Ex) $10 * 100 \rightarrow 10$ (dB) + 20 (dB) = 30 dB

"dBm" is not the same as "dB"

dBm is a **logarithmic power unit** referenced to 1mW.

$$
P(dBm) \equiv 10 \log_{10} \left(\frac{P(W)}{1 \, mW} \right)
$$

Example:

dBm, W, Vrms, Vp, Vpp chart

[dBm]	[Watts]	[Volts] _{rms}	[Volts]p	[Volts]pp
-10	$0.100E-03$	70.711 mV	99.985 mV	199.970 mV
-9	$0.126E-03$	79.339 mV	112.185 mV	224.370 mV
-8	0.158E-03	89.019 mV	125.874 mV	251.747 mV
-7	$0.200E-03$	99.881 mV	141.232 mV	282.465 mV
-6	$0.251E-03$	112.069 mV	158.465 mV	316.931 mV
-5	0.316E-03	125.743 mV	177.801 mV	355.602 mV
-4	0.398E-03	141.086 mV	199.496 mV	398.992 mV
-3	$0.501E-03$	158.301 mV	223.838 mV	447.677 mV
-2	$0.631E-03$	177.617 mV	251.151 mV	502.301 mV
-1	$0.794E-03$	199.290 mV	281.796 mV	563.591 mV

 0 dBm = 1 mW -10 dBm = 0.1 mW -20 dBm = 0.01 mW 10 dBm = 10 mW 20 dBm = 100 mW

Time domain vs Frequency domain

In **time-domain**, we talk about:

- How signal varies in time
- Rise/fall time
- Overshoot, ringing, settling time
- Timing and sync.
- **Trigger**

In **frequency-domain**, we talk about:

- Frequency component
- Bandwidth
- Cutoff frequency

RF/MW Components & Electronics

Coaxial cable & connector

@ Room temperature

- BNC cable (<1 GHz)
- SMA cable (DC 18 GHz)
- Loss increases as frequency and length.

@Cryogenic temperature

- Semi-rigid or flexible coaxial cable (DC-18 GHz)
- CuNi/CuNi, NbTi/NbTi, Nb/Nb,SS/SS
	- \rightarrow low thermal conductivity

[Ref: IBM]

Mixer (3-port)

- LO = Local Oscillator
- IF = Intermediate Frequency
- RF = Radio Frequency
- Nonlinear RF component
- Multiply two signals (LO & IF)
- Generate LO+IF, LO-IF **LO RF**

LO-IF LO LO+IF

$$
RF = A \sin(\omega_{IF} t) \times \sin(\omega_{LO} t)
$$

= $\frac{A}{2} [\cos((\omega_{LO} - \omega_{IF})t) + \cos((\omega_{LO} + \omega_{IF})t)]$

IQ Mixer (4-port)

Mixer Key Specs

Coaxial, Wideband **Frequency Mixer**

Level 15 (LO Power +15 dBm) 5000 to 21000 MHz

Maximum Ratings

Coaxial Connections

Features

· wide bandwidth, 5000 to 21000 MHz · low conversion loss, 8.5 dB typ. . high L-R isolation, 30 dB typ. · excellent IF BW, DC to 5000 MHz • rugged construction · small size · useable as up and down converter

Applications

· defense radar and communications \bullet VSAT \cdot ISM · line of sight links • WiFi · satellite up and down connectors

Generic photo used for illustration purposes only

CASE STYLE: UK2938

Connectors Model 2.92mm-Female ZMDB-24H-K+

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Electrical Specifications at 25°C

Conversion loss at 30 MHz IF. Increases with IF frequency.

• Frequency range

- Conversion loss
- Isolation
- Drive power level

Outline Drawing

Outline Dimensions (inch) A R C D

 F

Low Pass Filter / High pass filter

- LPF filter out high frequencies
- HPF filter out low frequencies
- Key specs:
	- \checkmark Cutoff frequency (3dB point)
	- \checkmark Slope (order of filter)
	- \checkmark Insertion loss@ passband

- Filter type
	- \checkmark Butterworth (flat passband)
	- \checkmark Chebyshev (steepest)
	- \checkmark Bessel (flat time delay)

Band pass filter

❖Typical BPF response (center freq.~9.55 GHz)

- BPF has passband.
- Key specs:
	- \checkmark Center frequency
	- \checkmark Bandwidth (3dB point)
	- \checkmark Slope (order of filter)
	- \checkmark Insertion loss@ passband

[Ref: Marki Microwave]

Attenuator & Terminator

- Attenuates RF power
- Pi- or T- network inside
- $Z_0 = 50 \Omega$
- Ex) 20 dB attenuator \rightarrow power reduced by 100

- Key specs
	- \checkmark bandwidth
	- \checkmark attenuation
	-

✓ material Pi-type attenuator

RF/MW Amplifier

- Amplify signals
- Key specs:
	- \checkmark Frequency range
	- \checkmark Gain (dB) = $P_{out}(dBm) P_{in}(dBm)$
	- \checkmark Noise temperature, $P_{noise} = kBT_N$
	- \checkmark 1 dB compression point
	- ✓ Maximum output power

[Ref: Texax Instruments]

Isolator/circulator

- Allows signal transmission in only one directior
- 2 or 3-port device
- Protect sample from unwanted signal
- Key specs:
	- \checkmark Frequency range
	- ✓ Insertion loss
	- ✓ Isolation

❖ Typical 4-8 GHz isolator response

Circulator Isolator Isolator

Bias-T

- Combine DC and RF
- Used when it's necessary to apply both DC & RF
- Key specs:
	- \checkmark Frequency range
	- ✓ Insertion loss
	- ✓ Isolation

RF/MW Electronics

ADC & DAC

ADC (Analog-to-Digital Converter)

- Convert analog signal to digital signal
- Number of bits \rightarrow Resolution

$$
resolution = \frac{Voltage range}{2^N - 1}
$$
 1V, 12-bit \rightarrow res = 0.00024 V

- Bandwidth set by sampling rate
- Usage: microphone, digital camera, oscilloscope, digitizer,…

DAC (Digital-to-Analog Converter)

- Convert digital to analog signal
- Resolution, bandwidth, …
- Usage: speaker, function generator, AWG, ...

Sampling theory: Nyquist Frequency

Q: In digital process, given the sampling rate f_s , what is the maximum frequency measurable?

```
A: \frac{f_s}{2}\frac{f}{2}, which is called Nyquist frequency f_N
```
Q: What happens if you measure 80 MHz signal with 100 MHz sampling rate? A: You will see the aliased signal at frequency of $(80 - 50)$ = 30 MHz

1Hz

 f_s =100 MHz

Network Analyzer, Spectrum analyzer

[Keysight]

[Keysight]

- Very versatile and useful, but expensive!
- Various form factors available

- Measure RF/MW signal in frequency domain
- Measure frequency component of periodic signal

Source: Signal Generator & Arbitrary Waveform Generator

Zurich \odot \odot

[Zurich Instruments]

- $\overline{}$ • Generate MW signal in wide bandwidth
- Key specs:
	- \checkmark Frequency range & resolution
	- \checkmark Power range & resolution
- $[Keysight]$ \checkmark Phase noise

- This can generate arbitrary waveforms.
- The waveform is defined by user.
- Key specs:
	- \checkmark Sampling rate
	- \checkmark Bandwidth
	- \checkmark Number of bits

Digitizer/Oscilloscope

- Measure voltage in real-time and/or display voltage signal vs time.
- Key specs:
	- Sampling rate
	- ✓ Bandwidth
	- \checkmark Number of bits

[Keysight Digitizer] [Keysight Oscilloscope]

RF/MW Measurement

"Measure" RF/MW?

- Power meter
	- \checkmark Measure RF power in dBm
- Oscilloscope
	- \checkmark Time-domain measurement
- Spectrum analyzer
	- \checkmark Frequency-domain measurement
- Network analyzer
	- \checkmark S-parameter measurement

How to make RF pulse

- 1. Turn on and off output of signal generator.
- 2. Use built-in gating function in the instrument
- 3. Use MW switch (for fast switching)
- 4. Use RF mixer.
- 5. Direct RF synthesis

How to make RF pulse: using 3-port mixer

\times $\| \| \| \| \| \| \| \| \| \|$ 5 GHz CW Gaussian envelope How to make a gaussian pulse? 0 f 0 5G f 5G $A(t)$ $\sin(\omega_{LO}t)$ $A(t)\sin(\omega_{LO}t)$ 5 GHz Gaussian pulse "Upconversion"

Conventional way: Mixer + AWG (IF) + signal generator(LO)

Problem:

- LO leakage
- No phase control

How to make RF pulse: sideband

How to make a gaussian pulse?

Conventional way: Mixer + AWG (IF)+ signal generator(LO)

Modulation with IQ-mixer

$$
V(t) = [A(t)e^{i\varphi}]e^{i(\omega_{LO}t)}, A(t) = \sqrt{(I(t)^{2} + Q(t)^{2}}, \varphi = \tan^{-1}(\frac{Q}{I})
$$

Single-side-band Modulation with IQ-mixer

$$
\widetilde{V(t)} = [A(t)e^{i\varphi}e^{i\omega_{IF}t}]e^{i(\omega_{LO}t+\phi)}
$$

Mixer calibration can remove: 1) LO leakage and 2) unwanted sideband

Pulse control: amplitude and phase

How to measure RF pulse: Demodulation

How to get $A(t)$, φ ?

Experiments using RF/MW

Shapiro steps in Josephson junction

• IV of Josephson junction + RF irradiation

$$
\Rightarrow \text{Shapiro steps: } V_n = \left(\frac{hf}{2e}\right)n
$$

Article

https://doi.org/10.1038/s41567-023-01961-4

Evidence of dual Shapiro steps in a Josephson junctionarray

Resonator measurement

- Measure transmission (S_{21}) or Reflection (S_{11})
- Key parameters:
	- Quality factor
	- Resonator frequency

3D Cavity

Superconducting qubit : Transmon

- Qubit Inductor + Large capacitor
- Weakly anharmonic
- Long coherence time
- $f_{01} \sim 5$ GHz

[P. Krantz et al., Appl.Phys.Rev. 6, 021318 (2019]

Control superconducting qubit state

In rotating frame, the driving Hamiltonian(Hd) is:

 $H_d \propto V(t) (I \sigma_X + Q \sigma_V)$

[P. Krantz et al., Appl.Phys.Rev. 6, 021318 (2019)]

Bloch sphere: visualize qubit state

- Qubit state is controlled by **microwave** pulses (normally called **XY-control**)
- Microwave pulse rotates the state vector around a rotation axis on XY-plane.

Measure qubit state – Dispersive readout in circuit-QED

- Qubit coupled to superconducting resonator
- Qubit state-dependent resonant frequency shift

[[]P. Krantz et al., Appl.Phys.Rev. 6, 021318 (2019)]

Example of RF/MW setup for qubit measurement

Modern RF Electronics for qubit experiment

Quantum Machines *Zurich Instruments*

Summary

- Covered RF concepts
- Covered RF/MW components and electronics
- Covered RF/MW measurement techniques

Let's try applying RF measurement techniques to your experiments

Thank you!