Lecture II 1st reminder from last lecture

Introduction to the Fractional Josephson Effect

Bias circuitry

To wrap‐up

For Josephson radiation we use a circuit similar to a Shapiro measurement. It consists of a JJ with a **proper shunt resistor** allowing to apply a DC bias over the junction:

The fractional Josephson effect: Current-Phase Relation \overline{a} and gate voltage for HEMT \overline{a} Attenuator

We have tested our setup sensitivity also for **InAs nanowires** with few modes and show that we can still detect the **Josephson radiation for a supercurrent that is due to a single conducting channel**.

This slide first shows the nanowires we use. They are from Copenhagen, so called "half-shell-coated" InAs NWs with Al as shell.

The figures on the right show a typical device where the Al shell is indicated with a weak blue touch. Here there is one gate from the right. In the device in which we have measured Josephson radiation, there are three gates

InAs nanowire with epitaxial Al half-shell

P. Krogstrup et al., Nature Materials **14**, 400 (2015)

- •Deposit on bottom gate structure
- •Partially remove Al by wet-etching
- •Sputtered NbTiN contacts

by Roy Haller et al. (PhD thesis) in collaboration with J. Nygard et al (Copenhagen)

… and here the measurement

The **main peak** corresponds to the usual **2 Josephson** radiation, the normal AC Josephson effect: i.e.h $f = 2eV$.

The much weaker peak for the same frequency at half the voltage is a second order process. Here, the inelastic tunneling is accomplished by the transfer of **two Cooperpairs per photon**.

A 4 π signal would show up with twice the slope as compared to the conventional 2 π Josephson radiation

master work of Dario Sufra

… and here the measurement

by Roy Haller et al. (PhD thesis) in collaboration with J. Nygard et al (Copenhagen)

J. Shabani *et al*., Phys. Rev. B **93**, 155402 (2016)

• S-QPC is defined and tuned by two split gates and on finger gate

by Carlo Ciaccia & Libin Wang in collaboration with M. Manfra group (Purdue)& C. Marcus group (Copenhagen)

The fractional Josephson effect: Current-Phase Relation with DC SQUID experiments 8

- •Wafer no. M-11-11-16
- •Sample: C3
- \bullet Measurements: Triton, Roy's PCB with 10 Ohm shunt resistor, \rightarrow 15.7.2021

by Carlo Ciaccia & Libin Wang in collaboration with M. Manfra group (Purdue)& C. Marcus group (Copenhagen)

actually, we have fabricated DC-SQUIDs

- •Junction length $~145$ nm, width 4 µm
- •SQUID loop area: 8.9 µm x 8.9 µm
- •Split gate separation: $d = 40$ nm (JJ1), 80 nm (JJ2)
- • ALD thickness:
	- \checkmark First layer: 15 nm
	- \checkmark Second layer: 25 nm

Lecture II Introduction to CPR by DC-SQUID measurements

Introduction to the Fraction of The Traction of the Fraction of the Fraction of the Fraction of the Fraction of t

Measure the Current-Phase Relation

Asymmetric SQUID

e.g. Saclay group, Urbina and coworkers (2008)

Rf susceptibility

Rf-SQUID: *Nano Lett.* 2013, 13, 3086-3092

Kathryen A. Moler et al.

Current-phase relations of InAs nanowire Josephson junctions: From interacting to multimode regimes

Sean Hart,^{1,2,*} Zheng Cui,^{1,2,3,*} Gerbold Ménard,⁴ Mingtang Deng,⁴ Andrey E. Antipov,⁵ Roman M. Lutchyn,⁵
Peter Krogstrup,^{4,6} Charles M. Marcus,⁴ and Kathryn A. Moler^{1,2,3}

PHYSICAL REVIEW

B

Measure the Current-Phase Relation

Asymmetric SQUID

e.g. Saclay group, Urbina and coworkers (2008)

Rf susceptibility

Rf-SQUID: *Nano Lett.* 2013, 13, 3086-3092

 $I_c(\phi) = I_{c2} + I_1(2\pi \phi/\phi_0 + \gamma_{2c})$ $I_c(\phi) = max_{\delta,\gamma} |I_1(\delta) + I_2(\gamma)|$ $I_{c2} = I_2(\gamma_{2c})$

CPR by asymmetric SQUID

Limitations of the Current-Phase Relation Measurements by an **Asymmetric dc-SQUID**

Ian Babich,* Andrei Kudriashov, Denis Baranov, and Vasily S. Stolyarov

CPR by asymmetric SQUID

The fractional Josephson effect: Current-Phase Relation with DC SQUID experiments 22

Ridderbos, M. Jung, and C. Schönenberger. *Phys. Rev. B* **108**, 094514 (2023)

Lecture II A study with the material WTe $_{\rm 2}$

Introduction to the Fraction of The Table 133

An experimental search for topology in WTe_2 **Lecture II: Focus more on CPR using the asymmetric SQUID approach**

Martin Endres, Artem Kononov, Christian Schönenberger Quantum- and Nanoelectronics group

Team

Samples and measurements:

A. Kononov, M. Endres, G. Abulizi and C. Schonenberger Department of Physics, University of Basel

WTe $_{\rm 2}$ growth:

H.S. Arachchige, K. Qu, J.Yan, D. G. Mandrus Materials Science and Engineering, The University of Tennessee

Marcus Wyss

NanoImaging Lab @ Swiss Nanoscience Institute, Univ. of Basel

hBN growth:

Kenji Watanabe, Takashi Taniguchi

Advanced Materials Laboratory, National Institute for Materials Science

WTe $_{\rm 2}$ intriguing properties

Nontrivial topology **Superconductivity**

\checkmark Bulk crystal is type II Weyl semimetal

 \checkmark Monolayer is 2D topological Insulator Z. Fei, T. Palomaki, S. Wu et al., Nature Physics 13, 677 (2017)

⊔. Higher-Order Topological insulator

Z. Wang, B.J. Wieder, J. Li, B. Yan, B.A. Bernevig, arXiv:1806.11116 **A. Kononov** et al., *Nano Lett.* **20**, 6, 4228 (2020)

Image: F. Schindler et al., Science Advances 4, no. 6, eaat0346 (2018)

P. Li, Y. Wen, X. He, Nature Comm. 8, 2150 (2017) V Under high pressure is superconducting X.-Ch. Pan, X. Chen, H. Liu, Nature Comm. 6, 7805 (2015)

\checkmark Superconducting when doped

T. Asaba, Y. Wang, G. Li et al., Scientific Rep. 8, 6520 (2018)

 \checkmark Monolayer is tunable with gate into superconducting state

E. Sajadi et al., Science 362, p. 922 (2018)

V. Fatemi et al., Science 362, p. 926 (2018)

 \Box Superconductivity at the interface with Pd **A. Kononov**, M. Endres et al., *Journal of Applied Physics* **129**, 113903 (2021)

Goal: search for **edge currents** in transport or edge DOS in STM

Josephosn junctions in TI materials

Use superconducting interference in wideJosephson junctions to probe the current distribution

To measure the **current distribution** in plane one makes use of quantum interference induced by the electromagnetic gauge field, related to the mag. field \emph{B} .

The acquired phase is given by the **flux (x)** divided by the flux quantum for a Cooper pair.

turrent (nA)

 $\mathbf{0}$

 O $\mathbf{1}$ $\overline{2}$ 3

 ϕ/ϕ

Example:

Weyl SM junction: WTe $_{\rm 2}$

WTe 2 predicted to be higher-order topological insulator

Junctions 1 & 2: $L = 1 \mu m$ Junction 3: $L = 2 \mu m$

experiments: Kononov *et al*., Nano Letters **20**, 4228 (2020) Y.-B. Choi et al., *Nat. Mater.* **19**, 974 (2020) C. Huang et al., *Nat. Sc. Rev.* **7**, 1468 (2020)

- •Pd induced superconductivity Kononov *et al*., Nano letters **20**, 4228 (2020)
- •hBN protection layer
- •MoRe side contacts Indolese *et al*., Nano letters **20**, 7129 (2020)

by Artem Kononov et al. in collaboration with D. Mandrus group (Univ. of Tennessee)

Weyl SM junction: WTe₂

Strongly non-sinusoidal current-phase relation $|A_2/A_1| \approx 0.4 \quad |A_3/A_1| \approx 0.22$

(close to the ballistic limit)

No signatures of topological superconductivity …

by Fabian Oppliger (master student 2020) & Artem Kononov et al.

WTe₂ "Fraunhofer effect"

Origing of induced superconductivity

M. Endres et al., Transparent JJs in Higher-Order Topological Insulator WTe₂ via Pd Diffusion, Phys. Rev. Mat. **13**, L081201 (2022)

Origing of induced superconductivity

diffusion profile !

New crystal structure formed near Pd contacts

M. Endres et al., Transparent JJs in Higher-Order Topological Insulator WTe₂ via Pd Diffusion, Phys. Rev. Mat. **13**, L081201 (2022)

Asymmetric SQUID devices in WTe $_{\rm 2}$

Measurement of I c with a counter

apply a current ramp and measure time when junction switches to the normal state, then repeat "over and over"

CPR of topological junctionn

4π periodic SC in topological ballistic junction (with a helical edge)

Beenakker et al., PRL 110 (2013)

Fermion-Parity Anomaly of the Critical Supercurrent in the Quantum Spin-Hall Effect

Interesting SQUID signals

Interesting SQUID signals

4π periodic SC in topological ballistic junction

Multivalued CPR, Little Parks diamonds

Murphy et al. , PRB 96, 2017

Beenakker et al., PRL 110 (2013)

Much larger flux range: multivalued !

 I_c resembling **inductance** dominated SQUID

Long range behavior attributed
to reference junction
Long multivalued I_c resembling
inductance dominated SQUID
inductance dominated SQUID
Superiodicity
of SQUID oscillations:
 $\delta B = 11.6 \mu T$
 $\delta B = \Phi_0/A_o = 11.1 \mu T$
Murphy Matching periodicity of SQUID oscillations:

Murphy et al., PRB 96 (2017) Lefevre‐Seguin et al., PRB 46 (1992) Friedrich et al., Appl. Phys. Lett. 104 (2014) Hazra et al., Appl. Phys. Lett. 16 (2021) Dausy et al., Phys. Rev. Appl. (2021)

Single junction

Single junction (also a sort of SQUID

M. Endres et al., Transparent JJs in Higher-Order Topological Insulator WTe $_2$ via Pd Diffusion, arXiv:2205.06542 (2022)

Single junction (also a sort of SQUID)

M. Endres et al., Transparent JJs in Higher-Order Topological Insulator WTe $_2$ via Pd Diffusion, arXiv:2205.06542 (2022)

CPR without loop inductance

Suggests that there is **inductance** likely produced by the PdTe alloy.

For large loop inductance, relation between applied **flux and phase** over the weak junction is **no longer single-valued**. Moreover, phase at reference junctions is not fixed at $\pi/2!$

CPR with loop inductance

CPR with loop inductance

1) Maximize $I_c(\phi_{tot}) = I_r(\varphi_r(\phi_{tot})) + I_w(\varphi_r(\phi_{tot}) + \phi_{tot})$ with respect to $\varphi_r(\phi_{tot})$

- 2) Extract the inductance effects $\phi_x = \phi_{tot} 2\pi (L_r I_r L_w I_w)/\Phi_0$
- 3) Plot $I_c(\phi_x)$

From the fit:

 $L_{_W}~=~220~pH$ $L_r = 60\ pH$ Exceeds $L_{aeo}\approx 27 \text{pH}$ and

Annunziata et al., Nanotechnology 21 (2010)

Inductance of the reference junction

Comparison of fit models

graphical illustration

Visual apporach to maximize I_c

Another approach to multivalued SQUID

$$
U(x,y) = U_0 \left[-\frac{I}{2I_0} x - \cos(x)\cos(y) - \alpha \sin(x)\sin(y) - \eta \frac{I}{2I_0} y + \beta(y - \frac{1}{2}\phi_x)^2 \right]
$$

$$
x = \varphi_r + \varphi_w
$$

\n
$$
y = (\varphi_r - \varphi_w)/2
$$

\n
$$
\beta = \frac{\Phi_0}{2\pi L I_0}
$$

\n
$$
I = \frac{V_{bias}}{R_{bias}}
$$

\n
$$
I_c^r = I_0(1 + \alpha
$$

\n
$$
\alpha = \frac{a - 1}{a + 1}
$$

\n
$$
a = I_c^r/I_c^w
$$

\n
$$
I_c^{\text{two}} = I_0(1 - \alpha
$$

Lefevre‐Seguin et al., PRB 46 (1992)

Another approach to multivalued SQUID

Occupation of vorticity states

Conclusions

- \bullet **no sign** of 4π -periodic current-phase relation
- \bullet **no sign** of the fractional Josephson effect (AC Josephson current mediated by single electrons, not Cooper pairs)
- \bullet **supercurrent over 1.5μm** is still quite impressive

Thank you for your attention!

Christian Schönenberger, 14th Oct. 2022

WTe₂ D. Mandrus et al. Univ. of Tennessee

A. Kononov et al. *One-dimensional edge transport in few-layer WTe₂, Nano Letters 20, 4228–4233 (2020)* M. Endres et al. Transparent Josephson Junctions in Higher-Order Topological Insulator WTe2 via Pd Diffusion, Phys. Rev. Mat. 6, L081201 (2022)(2022)

End of Lecture II (maybe add results from Orsay – Bouchiat's group)

Introduction to the Fraction of The Traction of the Fraction of the Fraction of the Fraction of the Fraction of t
Introduction to the Fraction of the Fraction