

중시계 진동자의 광역학적 상호작용 Optomechanical interactions in mesoscopic oscillators

Junho Suh

Pohang University of Science and Technology

hybrid quantum device lab

The 14th School of Mesoscopic Physics: Mesoscopic Interactions

TOPICS

1. Quantum Transport and Topological Matters

2. Light-Matter Interaction

3. Mesoscopic Superconductor interaction

4. Phonon-Cooper pair interaction

5. Josephson Diode

ORGANIZERS

Myoung-Ho Bae (KRISS) Hyungkook Choi (Jeonbuk Nat'l Univ.) Hyoungsoon Choi (KAIST) Yong-Joo Doh (GIST) Nojoon Myoung (Chosun Univ.) Myunglae Jo (KNU) Minkyung Jung (DGIST) Hee Chul Park (Pukyong Nat'l Univ.) Heungsun Sim (KAIST) Sekwon Kim (KAIST)

상호(相互) 작용 - (Mutual) Interaction

* "interacting quantum states" image generated by chatGPT

광역학적 상호작용

마이크로/나노 역학적 진동자 (MHz~GHz)

마이크로파 대역 전자기파 (0.3~30 GHz)

마이크로파 중시계 소자의 예

Superconducting qubit

Superconducting CPW resonator

Nano-acoustic resonator

*** Low temperature necessary:

Why? Microwave photon energy > thermal energy e.g.) 1 GHz microwave photon ~ 50 mK thermal energy

[Cavity Hamiltonian] $= \hbar \omega_{cav} \hat{a}^{\dagger} \hat{a}$ \downarrow [Optomechanical interaction Hamiltonian] $= \hbar \frac{\partial \omega_{cav}}{\partial x} \hat{x} \hat{a}^{\dagger} \hat{a} \qquad "radiation pressure"$

* Aspelmeyer et al., Rev. Mod. Phys. 86, 29 (2014).

* Aspelmeyer et al., Rev. Mod. Phys. 86, 29 (2014); Devoret et.al., lecture notes of les houches summer school (2011).

Mechanical oscillator couples to photons

$$\widehat{H} = \hbar \omega_{cav} \widehat{a}^{\dagger} \widehat{a} + \hbar \Omega \widehat{b}^{\dagger} \widehat{b} + \hbar g_0 \widehat{a}^{\dagger} \widehat{a} (\widehat{b}^{\dagger} + \widehat{b})$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$photon \qquad \qquad interaction$$

$$phonon$$

* Optomechanical "single-photon" coupling strength

$$g_0 = \frac{\partial \omega_{cav}}{\partial x} x_{zpf}$$

* Aspelmeyer et al., Rev. Mod. Phys. 86, 29 (2014); Devoret et.al., lecture notes of les houches summer school (2011).

- Ultrasensitive measurements
- Quantum hybrid systems
- Fundamental tests of quantum mechanics with gravity
- Classical/Quantum information processing ...

* Aspelmeyer et al., Rev. Mod. Phys. 86, 29 (2014).

암흑물질

Atomic force

Mechanical quantum sensing

Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency	Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency
Neutral atoms Atomic vapor	Atomic spin	Magnetic field, rotation,	dc-GHz	Superconducting circuits SQUID ^c	Supercurrent	Magnetic field	dc-GHz
Cold clouds	Atomic spin	Magnetic field, acceleration.	dc-GHz	Charge qubit	Charge eigenstates	Electric field	dc-GHz dc-GHz
T		time/frequency		Elementary particles Muon	Muonic spin	Magnetic field	dc
Trapped ion(s)	Long-lived electronic state Vibrational mode	Time/frequency Rotation Electric field, force	THz MHz	Neutron	Nuclear spin	Magnetic field, phonon density,	dc
Rydberg atoms	Rydberg states	Electric field	dc, GHz	Other sensors		gravity	
Solid-state spins (ensembles) NMR sensors Nuclear spins NV ^b center Electron spins Magnetic field		Magnetic field Magnetic field,	dc dc-GHz	SET ^d Optomechanics	Charge eigenstates Phonons	Electric field Force, acceleration, mass, magnetic field voltage	dc-MHz kHz–GHz
ensembles	9999999999999999999 🗶 (* 1929)	electric field, temperature, pressure, rotation		Interferometer	Photons, (atoms, molecules)	Displacement, refractive index	
Solid-state spins (single	e spins)						
P donor in Si	Electron spin	Magnetic field	dc-GHz				
Semiconductor quantum dots	Electron spin	Magnetic field, electric field	dc-GHz				
Single NV ^b center	Electron spin	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz				

* C. L. Degen et.al, "Quantum sensing", Rev. Mod. Phys. 89, 035002 (2017).

Mechanical oscillators as force sensors

Scientific

MEMS/NEMS sensors

- Force from single quanta
- Mass of single atom/molecule

Industrial

Hemispheneta resonator gyroscope

- Coriolis force

MEMS accelerometer - inertial force from acceleration

* Suh et al., Science 344, 1262 (2014)

조화 진동자

for external force $F \cos \omega t$,

Amplitude measurement

Near-resonant Force

Frequency measurement

Frequency measurement

Example of doubly clamped beam

Eigenmode = harmonic oscillator

Equation of motion

• Euler-Bernulli equation

seperation of variables; normal modes

* Foundations of nanomechanics, A. N. Cleland

damping can be included by adding a dissipation term

- In frequency domain (quality factor
- At resonance,

* Foundations of nanomechanics, A. N. Cleland

Example of doubly-clamped beam

- boundary condition: fixed ends, zero-slopes
- First four mode shapes

* Foundations of nanomechanics, A. N. Cleland

예제: magnetic resonance force microscopy

* D. Rugar *et.al.*, Single spin detection by magnetic resonance force microscopy, *Nature* **430**, 329 (2004).

Mechanical detection of single electron spin flip

* D. Rugar *et.al.*, Single spin detection by magnetic resonance force microscopy, *Nature* **430**, 329 (2004).

Mechanical detection of single electron spin flip

* D. Rugar *et.al.*, Single spin detection by magnetic resonance force microscopy, *Nature* **430**, 329 (2004).

Frequency measurement

* D. Rugar *et.al.*, Single spin detection by magnetic resonance force microscopy, *Nature* **430**, 329 (2004).

예제: protein mass spectrometry

* M. S. Hanay et.al., Single-protein nanomechanical mass spectrometry in real time, Nat. Nano. 7, 602 (2012).

Mechanical mass sensing

* M. S. Hanay et.al., Single-protein nanomechanical mass spectrometry in real time, Nat. Nano. 7, 602 (2012).

Multi-mode frequency measurement

* M. S. Hanay et.al., Single-protein nanomechanical mass spectrometry in real time, Nat. Nano. 7, 602 (2012).

Protein mass spectrometry

* M. S. Hanay et.al., Single-protein nanomechanical mass spectrometry in real time, Nat. Nano. 7, 602 (2012).

Quantum mechanics defines minimum uncertainty in position measurement

"standard quantum limit"

* C. M. Caves et.al., Rev. Mod. Phys. 52, 341 (1980).

Quantum mechanics defines minimum uncertainty in position measurement

Quantum measurement of mechanical oscillators II Ultimate-precision force sensing

* C. M. Caves et.al., Rev. Mod. Phys. 52, 341 (1980).

Strong coupling between phonons and photons ⇒ hybrid quantum devices for quantum information science

중시계 진동자의 광역학적 상호작용 Optomechanical interactions in mesoscopic oscillators

Junho Suh

Pohang University of Science and Technology

hybrid quantum device lab

* Aspelmeyer et al., Rev. Mod. Phys. 86, 29 (2014).

* Devoret et.al., lecture notes of les houches summer school (2011).

* Devoret et.al., lecture notes of les houches summer school (2011).

* Devoret et.al., lecture notes of les houches summer school (2011).

* Devoret et.al., lecture notes of les houches summer school (2011).

Microwave cavity optomechanical system

Photon-phonon coupling

Quantum-limited detection of motion

Measurement back-action in Heisenberg's microscope

Measurement back-action in Heisenberg's microscope

Measurement back-action in Heisenberg's microscope

How about mechanical oscillator?

^{*} A. Clerk et.al., Rev. Mod. Phys. 82, 1155 (2010).

(=

Standard quantum limit

Braginsky⁶ has pointed out that the above "quantum limits" on ΔX_1 , ΔX_2 , and ΔN pose serious obstacles for gravitational-wave detection: To encounter at least three supernovae per year, one must reach out to the Virgo cluster of galaxies. But gravitational waves from supernovae at that distance will produce $|\Delta X_1| \simeq |\Delta X_2| \lesssim 0.3$ $\times [m/(10 \text{ tons})](\hbar/m\omega)^{1/2}$ in a mechanical oscillator on earth, corresponding to $\Delta N \leq 0.4(N+\frac{1}{2})^{1/2} [m/m]$ (10 tons)]. For detectors of reasonable mass this signal is below the quantum limit.

^{*} K. S. Thorne *et.al., Phys. Rev. Lett.* **40**, 667 (1978).

Evading quantum back-action

Evading quantum back-action

$$\hat{x}(t) = \hat{X}_1 \cos \omega_m t + \hat{X}_2 \sin \omega_m t$$
"Quadratures" of motion

 \hat{X}_1, \hat{X}_2 : constants of motion of harmonic oscillator \Rightarrow can be measured with no back-action \Rightarrow back-action into the "unseen" quadrature

> * Braginskii *et.al., Sov. Phys. Usp.* **17**,644 (1975); Thorne *et.al., Phys. Rev. Lett.* **40**, 667 (1978).

Experiments

back-action on ONE quadrature

Evade quantum back-action by 8.5 dB

Ground state cooling of mechanical motion

Phase-dependent cooling

"Phase-dependent" reduction of mechanical motion (i.e. Squeezing)

$$\widehat{x}(t) = \widehat{X_1}(t) \cos \omega_m t + \widehat{X_2}(t) \sin \omega_m t$$

Arbitrarily large steady-state bosonic squeezing via dissipation

- Optimal ratio between red and blue power
- Squeezing beyond 3dB possible
- Steady state is squeezed thermal state
- State purity vs. squeezing

* Kronwald et.al. Phys. Rev. A 88, 063833 (2014).

Squeezing more than 3 dB below zero-point

* Lei, Weinstein, JS, Wollman, Kronwald, Marquardt, Clerk, Schwab, PRL 117, 100801 (2016).

Niobium for cavity optomechanical sensing under magnetic field

Niobium superconducts at higher temperatures and magnetic fields.

	Aluminum	Niobium	
Critical Temperature (Tc)	1.2K	9.26K	1
Critical Magnetic Field(Hc)	0.01 T	0.82 T	
Density	2700 kg/m ³	8570 kg/m ³	Froostandin
Young's modulus	70 Gpa	105 GPa	Fleestanun
Poisson ratio	0.35	0.4	
Advantages	 Easy to control the film stress Large zero point motion due to the small mass 	 Good mechanical properties High critical temperature and magnetic field 	
Disadvantages	Low critical temperature	Difficult to control the film stress	Deformed

Jinwoong Cha (KRISS)

* J. Cha et.al., "Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields", Nano Letters **21**, 1800 (2021).

Fabrication

Microwave cavity optomechanics at 4.2 K

* Cha *et.al, Nano Letters* **21**, 1800 (2021). 중시계 여름학교

Back-action cooling at 4.2 K

- Cooling process accompanies with mechanical linewidth broadening
- Efficient cooling of mechanical mode temperature from 4.2 K to 76 mK

Electromechanical induced reflection of microwave

- Probe microwave interferes destructively with mechanical sideband from pump
- Reflection window

$$\Gamma_{\rm EMIR} = \Gamma_{\rm m} \left(1 + \frac{4g_0^2 n_d}{\kappa \Gamma_m} \right) = \Gamma_{\rm m} (1 + C)$$

• Single photon coupling

 $g_0 \approx 3.3 \text{ Hz}$

Cooperativity

$$C \approx 40$$

Operation in magnetic field

- Magnetic field B affects the microwave resonance frequency and linewidth.
- Mechanical sideband signal persists even at 0.8 T.
- Cooperativity decreases as *B* increases due to the increasing cavity decay rate.
- Single-photon coupling rate is independent of magnetic field.

* Cha et.al, Nano Letters 21, 1800 (2021).

Niobium optomechanics for non-linear optomechanics

Nb handles more RF current (~6x10³ more RF photons)

	Aluminum	Niobium	
Critical Temperature (Tc)	1.2K	9.26K	
Critical Magnetic Field(Hc)	0.01 T	0.82 T	
Density	2700 kg/m ³	8570 kg/m ³	
Young's modulus	70 Gpa	105 GPa	
Poisson ratio	0.35	0.4	
Advantages	 Easy to control the film stress Large zero point motion due to the small mass 	 Good mechanical properties High critical temperature and magnetic field 	
Disadvantages	Low critical temperature	Difficult to control the film stress	

Linear photon-phonon conversion

Multiple non-linear sidebands

Nonlinear responses above instability

* J. Shin et.al., Nano Letters 22, 5459 (2022).

Optomechanical frequency comb

New J. Phys. 20 (2018) 043013

https://doi.org/10.1088/1367-2630/aab5c6

Optomechanical frequency combs

Mohammad-Ali Miri, Giuseppe D'Aguanno and Andrea Alù^{1,2,3}

- ¹ Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
- ² Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York 10016, United States of America 3
- ⁴ Department of Electrical Engineering, City College of The City University of New York, New York 10031, United States of America

E-mail: aalu@gc.cuny.edu

Keywords: combs, optomechanics, nanophotonics

Optomechanical frequency comb

Utilizing Dissipation: Nanomechanical microwave bolometer

Nanomechanical sensor detects heat from microwave photons

* J. Kim et.al., "Nanomechanical Microwave Bolometry with Semiconducting Nanowires", Physical Review Applied 15, 034075 (2021).

InAs nanowire based cavity optomechanics

Resistive nanowire dissipates microwave power

* J. Kim et.al., Physical Review Applied **15**, 034075 (2021).

Nanomechanical thermometer

Mechanical resonance senses microwave power

2025-05-22

Nanomechanical microwave bolometry

- "Noise equivalent power" NEP = $4.5 \text{ pW/Hz}^{1/2}$
- Maximum detectable power ~ nW
- c.f. Josephson bolometer has NEP ~ aW/Hz^{1/2} and maximum power ~ fW (ref. *Nature* 586, 42 (2020))

Outlook: quantum transducer and sensors

entangled force sensors

*Kotler et al., Science 372, 622 (2021).

quantum transduction

* "Integrated quantum interconnects for long-distance quantum networks" funded by NST

sensors for new physics

* "Quantum electromechanical interface for Majorana qubits" funded by Samsung foundation 중시계 여름학교 72
Hybrid Quatum Device Lab

hql.postech.ac.kr

