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I. OUTLINE

This lecture introduces the fundamental principles of quantum light-matter interaction, with a focus on the frame-
work of circuit quantum electrodynamics (cQED), where microwave photons interact with matter degrees of freedom.
We begin by discussing the quantization of the electromagnetic field in a microwave resonator. Building on this
foundation, we explore the physics of light-matter interaction

The first example is the electric dipole interaction between a transmon qubit and microwave photons. We derive
the Jaynes-Cummings model as an effective description of this system and discuss both the resonant and dispersive
regimes. These regimes form the basis for coherent control and high-fidelity measurement of superconducting qubits.
The second example involves magnetic dipole coupling between magnons and microwave photons, forming the basis
of cavity quantum magnonics. We will see how quantum states of collective magnetic excitations can be prepared and
probed via their interaction with microwave photons.

Through these examples, we aim to illustrate how different physical platforms harness quantum electromagnetic
fields to control and study quantum systems.

II. QUANTIZATION OF ELECTROMAGNETIC FIELD

A standard approach to quantizing the electromagnetic field begins by constructing a Lagrangian that reproduces
Maxwell’s equations. From this, one identifies the conjugate variables and constructs the corresponding Hamiltonian.
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By expressing the field in terms of its normal modes, whose commutation relations follow the canonical bosonic form,
one arrives at the non-interacting Hamiltonian for the photonic modes:

Hpho =
∑
k

ωka
†
kak. (1)

Here, the operators a†k and ak create and annihilate, respectively, a photon with frequency ωk. A detailed treatment
of electromagnetic field quantization can be found in standard textbooks such as Ref. [1].

In mesoscopic systems, the electromagnetic field is often supported by electrical circuits. In such cases, it is
convenient to work with circuit variables such as charge, flux, voltage, and current. The quantization procedure
follows the same basic steps: (a) construct a Lagrangian that yields the equations of motion for the circuit under
consideration, (b) identify the conjugate variables and construct the corresponding Hamiltonian, and (c) impose
canonical commutation relations on the normal modes of the conjugate variables. This leads to a bosonic Hamiltonian
describing non-interacting photons, as above.

This circuit-based quantization scheme for the electromagnetic field will be introduced in this lecture.

A. Circuit quantization of a lumped LC oscillator

An electrical circuit can be analyzed with the current and the voltage drop across the circuit elements, or equiv-
alently, with a time integral of the current and voltage variable. The equation of motion is obtained from the usual
Kirchkoff’s law. Consider a simple LC oscillator in Fig. 1. A variable we use to describe the oscillator is the flux Φ,
defined as

Φ(t) =

∫ t

−∞
V (t′)dt′ (2)

A sign convention for the current and the voltage is following: For an element with a node 1 and 2, a positive current
direction is from the node 1 to 2, while the voltage drop is defined as the voltage difference from the node 2 to 1.
For example, in Fig. 1, for the current I flowing from the ground to the node Φ (the red dot), the associated voltage
drop is the voltage difference between the red dot and the ground, V − 0. Using this sign convention, we express the
current through the inductor and capacitor,

IL =
Φ− 0

L
=

Φ

L
, IC = C(V̇ − 0) = CΦ̈ (3)

From the Kirchhoff’s law, IC + IL = 0, the equation of motion is

CΦ̈ +
Φ

L
= 0. (4)

The classical Lagrangian that gives the above equation of motion,

L =
CΦ̇2

2
− Φ2

2L
(5)

This is nothing but a harmonic oscillator with the flux variable Φ as a position coordinate. The momentum conjugate
variable, Q, is then,

Q =
∂L
∂Φ̇

= CΦ̇ (6)

We construct the Hamiltonian from the Legendre transformation,

H = QΦ̇− L =
Q2

2C
+

Φ2

2L
(7)

and finally, we impose a the canonical commutation relation ([x, p] = iℏ), and treat the variables as operators,

[Φ̂, Q̂] = iℏ (8)
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FIG. 1: A lumped LC oscillator.

H =
Q̂2

2C
+

Φ̂2

2L
(9)

We proceed by defining the usual creation and annihilation operators. Recall that for the harmonic oscillator H =
p2

2m + mw2

2 x2, the zero point fluctuation are xZPF =
√

ℏ
2mw and pZPF =

√
ℏmw
2 . The zero point fluctuation of the

flux and the conjugate variable is then,

ΦZPF =

√
ℏZ
2
, QZPF =

√
ℏ
2Z

(10)

where Z =
√
L/C is the characteristic impedance of the LC oscillator. Using these, we define the Φ and Q using a

dimensionless creation and annihilation operators,

Φ̂ = ΦZPF (a+ a†), Q̂ = iQZPF (a
† − a) (11)

Then, the Hamiltonian becomes

H = ℏω0(a
†a+

1

2
) (12)

with ω0 = 1/
√
LC. The excitations of the LC circuit can be regarded as photons. We call this as a lumped LC

oscillator because the typical wavelength of the 2πc
ω0

, which is around centimeters, is much longer than the size of the
circuit, typically in micrometers. In next section, we will deal with a different kind of LC oscillator where the size of
circuits is also a centimeter long so that the lumped approximation cannot hold anymore.

B. Quantization of coplanar microwave cavity

Now we consider a coplanar waveguide of length 2ℓ with a capacitance of 2ℓC0 and an inductance 2ℓL0. Here, C0

and L0 are defined as capacitance and inductance per unit length. The coplanar waveguide can be modeled as a series
of LC oscillator as shown in Fig. 2. We start with setting up the equation of motion. The current flowing out of the
node n is given by

In+1,L0
=

Φn+1 − Φn

L0∆x
(13)

where ∆x is the length of the distributed inductor. On the other hand, the current flowing into the node has a
contribution both from the inductor and capacitor,

In,L0 =
Φn − Φn−1

L0∆x
, In,C0 = C0∆xΦ̈n (14)
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From the Kirchhoff’s law, In,L0 + In,C0 = In+1,L0 , the equation of motion is

C0∆xΦ̈n =
Φn+1 − 2Φn +Φn−1

L0∆x
(15)

The Lagrangian that gives rise to the above equation of motion is,

L =
∑
n

[
C0∆xΦ̇

2
n

2
− (Φn − Φn−1)

2

2L0∆x

]
(16)

By consdering the continuum limit, ∆x→ 0, the Lagrangian becomes

L =

∫ ℓ

−ℓ

dx

[
C0Φ̇(x)

2

2
− (∂xΦ(x))

2

2L0

]
(17)

with the equation of motion

Φ̈(x) =
1

C0L0
∂2xΦ(x) (18)

which is simply a wave equation with a velocity v = 1/
√
L0C0. Note also that the current and voltage at x is given

by

I(x) =
∂xΦ(x)

L0
(19)

V (x) = Φ̇(x). (20)

The boundary condition is given by vanishing current at the end of the central conductor, namely,

∂xΦ(x)|ℓ = ∂xΦ(x)|−ℓ = 0 (21)

Now, what we need to do is to find a normal mode of the system. We express the flux variable in terms of normal
modes,

Φ(x, t) =

∞∑
n=1

ψn(t)vn(x) (22)

which satisfy

ψ̈n(t) = −w2
nψn(t), ∂2xvn(x) = −k2nvn(x) (23)

with wn = knv. By imposing the bound condition (Eq. 21), we can solve the above equation and get

vn(x) =

√
1

ℓ
cos[kn(x+ ℓ)] (24)

where kn = πn
2ℓ and the normalization condition is imposed;∫ ℓ

−ℓ

vm(x)vn(x)dx = δnm (25)

With the normal mode, the Lagrangian can be diagonalized,

L =
∑
n

(
C0

2
ψ̇2
n − 1

2L0
k2nψ

2
n) (26)

=
C0

2

∑
n

(
ψ̇2
n − w2

nψ
2
n

)
(27)
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Finally, we define the charge conjugate variable,

θn =
∂L
∂ψ̇n

= C0ψ̇n (28)

from which we obtain the Hamiltonian

H =
∑
n

(
1

2C0
θ2n +

C0

2
w2

nψ
2
n) (29)

Then, we impose the canonical commutation relation

[ψ̂m, ϕ̂n, ] = iℏδnm

The coefficient of the Hamiltonian in Eq. 29 is arranged in a way that one can directly guess the zero point fluctuation
of the flux and the charge variables, and define the dimensionless creation and annihilation operators,

ψ̂n = ψZPF (ân + â†n) (30)

θ̂n = iθZPF (â
†
n − ân) (31)

where

ψZPF =

√
ℏ

2C0wn
=

√
ℏZ
2kn

(32)

θZPF =

√
C0ℏwn

2
=

√
ℏkn
2Z

(33)

where the characteristic impedance Z =
√
L0/C0. We now arrive at the quantized Hamiltonian of the transmission

line,

H =
∑
n

ℏωn(â
†
nân +

1

2
) (34)

with[an, a
†
m] = 1. In circuit QED, we can utilize a capacitive coupling or inductive coupling to the superconducting

qubit, depending on the flavor of the qubit of interest. In this case, we need to know express the flux or charge
variables at the point where the field couples to the qubit. Therefore, in terms of the normal mode, they are

Φ̂(x) = ψZPF

∑
n

(an + a†n)vn(x) (35)

Q̂(x) = iθZPF

∑
n

(a†n − an)vn(x) (36)

The voltage and current operators will also be found useful, and they can be obtained using V̂ (x) = Q̂
C0

and Î(x) =

∂xΦ̂(x),

V̂ (x) = i

√
ℏwn

2C0

∑
n

(a†n − an)vn(x) (37)

Î(x) = ψZPF

∑
n

(an + a†n)

√
1

ℓ
(−kn) sin[kn(x+ ℓ)]

= −
√

ℏL0ℏwn

2ℓ

∑
n

(an + a†n) sin[kn(x+ ℓ)] (38)
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FIG. 2: A microwave cavity made out of a 2D transmission line can be modeled as a distributed LC circuit.

III. CIRCUIT QED - ELECTRIC DIPOLE INTERACTION BETWEEN MICROWAVE PHOTONS AND
TRASMON QUBIT

A. Transmon

A Josephson junction can be understood as a non-linear inductor whose potential energy is given by

EJ = −EJ cos(2π
Φ̂

Φ0
). (39)

where EJ is the Josephson energy and Φ0 = h/2e is the flux quantum. A cooper pair box consists of the capacitor
and the Josephson junction. We can write down the Hamiltonian for the cooper pair box with the knowledge of the
lumped oscillator. From the Hamiltonian for the lumped LC oscillator, given in Eq. 7, we can simply replace the
inductor part with the Josephson junction energy. That is,

HCPB =
(Q̂−Qg)

2

2CJ
− EJ cos(2π

Φ̂

Φ0
) (40)

Note that we have added Qg to change the potential minimum for the charge which can be controlled by a gate

voltage Qg = CgVg or can be uncontrolled off-set charge. The commutation relation is still the same, [Φ̂, Q̂] = iℏ.
Equivalently, we can define the number operator, n̂ = Q̂/(2e), and using the phase operator, ϕ̂ = 2π Φ̂

Φ0
, and re-express

the Hamiltonian,

HCPB = 4EC(n̂− ng)
2 − EJ cos(ϕ̂) (41)

where EC = e2/(CJ + Cg).
The transmon operates at a parameter regime EJ ≫ EC . Namely, the Josephson energy dominates over the

charging energy and therefore the number of charge has a large fluctuation in the eigenstates. Therefore, the gate
voltage has little effect in the energy eigenstates, which translates into an insensitivity to charge noise and a increased
coherence time, compared to a charge qubit which operates in an opposite limit EC ≫ EJ . The phase fluctuation for
transmon, on the other hand, is highly suppressed and therefore it is possible to expand the cosine potential around
the potential minimum ϕ = 0, leading to

Htransmon = 4EC n̂
2 +

EJ

2
ϕ̂2 − EJ

4!
ϕ̂4 (42)

The quadratic part of the Hamiltonian is just a harmonic oscillator like the lumped LC oscillator case, and it can be
diagonalized using

ϕ̂ =

(
2EC

EJ

)1/4

(â+ â†) (43)

and

n̂ =
i

2

(
EJ

2EC

)1/4

(â† − a) (44)
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where [â, â†] = 1. The transmon Hamiltonian is then a non-linear harmonic oscillator with a quartic potential, which
reads

Htransmon =
√

8EJEC â
†â− EJ

12
(â+ a)4 (45)

Exercise 1. Find the typical values for the Josephson energy EJ and the charging energy EC of the transmon
qubit realized in any recent experiments. Estimate the anharmonicity of the energy spectrum by calculating
numerically the energy difference between the first excited state and the ground state (E1−E0) and the energy
difference between the second excited state and the first excited state (E2 − E1).

Thanks to the anharmonicity in the energy spectrum estimated above, the system can be approximated as a two-
level system by truncating to the lowest two energy levels, enabling its use as a qubit. While the probability of exciting
higher energy levels is small, it is not negligible and constitutes an important source of error in qubit operations, known
as leakage error.

B. Capacitive coupling between the microwave resonator and the transmon

A transmon, consisting of two superconducting islands connected by a Josephson junction, can be regarded as an
electric dipole. When placed inside a microwave resonator, the transmon interacts with the resonator through electric
dipole coupling. In the case of a lumped-element LC resonator, this interaction can be modeled as a capacitive
coupling mediated by a coupling capacitor Cc. The corresponding charging energy takes the form

Hint = 8ECc
n̂resn̂trans, (46)

where terms proportional to Q̂2
res and Q̂

2
trans are neglected, as they merely renormalize the capacitances of the resonator

and the transmon, respectively. Using Eq. 44, and denoting the boson operator for the resonator â and for the transmon

b̂, respectively, the interaction Hamiltonian reads

Hint = −2ECc

(
EJ,res

2EC,res

)1/4 (
EJ,trans

2EC,trans

)1/4

(â† − â)(b̂† − b̂) (47)

After the two-level approximation for the transmon, we can replace b̂ (b̂†) with the pauli operaltor σ− (σ+). Let’s
also denote the coupling energy given above as ℏλ. Then, we arrive at the so-called quantum Rabi model,

HQRM = ω0a
†a+

1

2
Ωσz − λ(a† − a)(σ+ − σ−). (48)

Note that we have set ℏ = 1 for convenience. The interaction Hamiltonian can be divided into

Hint = λ
(
aσ+ + a†σ−

)
+ λ

(
aσ− + a†σ+

)
(49)

The second term create or annihilate an energy quanta from the qubit and the field at the same time. These terms
are called counter rotating terms. If the coupling strength g is much smaller than the cavity frequency ω0, this term
can be neglected by the so-called rotating wave approximation. A typical energy scale for the circuit QED systems
with a transmon qubit indeed satisfy this condition. Namely, ω0 and Ω is in the range of a few GHz, while g is in the
order of 100 MHz.

C. Jaynes-Cummings Hamiltonian

After neglecting the conter rotating terms, the circuit QED Hamiltonian becomes the Jaynes-Cummings Hamilto-
nian

HJC = ω0a
†a+

1

2
Ωσz + λ

(
aσ+ + a†σ−

)
(50)

The JC Hamiltonian has a conserved quantity. Consider

M = a†a+
1

2
σz (51)
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FIG. 3: Eigenvalues of the nth block of the Jaynes-Cummings Hamiltonian

which represents a total number of excitation. Notice

[M,HJC ] = 0 , (52)

so that the total number of excitation is preserved. Therefore the Hamiltonian can be block-diagonalized into subspaces
spanned by states with a same number of excitations, that is, |n, ↑⟩ and |n+ 1, ↓⟩.

H
.
=



H · · · |n, ↑⟩ |n+ 1, ↓⟩ · · ·
...

. . .

⟨n, ↑| nω0 +
1
2Ω λ

√
n+ 1

⟨n+ 1, ↓| λ
√
n+ 1 (n+ 1)ω0 − 1

2Ω
...

. . .

 , (53)

The nth block Hamiltonian can be written in terms of a pseudo spin

Hn = ω0

(
n+

1

2

)
τ0 +

1

2

{
∆ τz + 2λ

√
n+ 1τx

}
, (54)

where τµ (µ = 0, x, y, z) are (pseudo-spin) Pauli matrices and ∆ = Ω− ω0. The eigenvalues are

E±(n) = ω0

(
n+

1

2

)
± 1

2

√
(1 + n)(2λ)2 +∆2 (55)

= ω0

(
n+

1

2

)
± 1

2

√
λ2n +∆2 (56)

where λn ≡ 2λ
√
n+ 1. See Fig. 3for the energy as a function of the detuning ∆. The corresponding eigenvectors are

|n,+⟩ = +cos(θn/2) |n, ↑⟩+ sin(θn/2) |n+ 1, ↓⟩ , (57)

|n,−⟩ = − sin(θn/2) |n, ↑⟩+ cos(θn/2) |n+ 1, ↓⟩ , (58)

where tan θn ≡ (2λ/∆)
√
n+ 1.

D. Vacuum Rabi oscillation

At resonance, ∆ = 0, the eigenstates are

|n,+⟩ = 1√
2
(|n, ↑⟩+ |n+ 1, ↓⟩) , (59)

|n,−⟩ = 1√
2
(− |n, ↑⟩+ |n+ 1, ↓⟩) . (60)
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and the energy difference between the two states is

λn = 2λ
√
n+ 1 (61)

Therefore, if one prepare an initial state |n, ↑⟩, the state will oscillate between |n, ↑⟩ and |n+ 1, ↓⟩ at a frequency, λn.
This holds true even when initially there is no photon inside of the cavity. That is if one prepare a state, |0, ↑⟩, the
cavity and the atom can exchange an energy quanta at a frequency, 2λ, and this is called a vacuum Rabi frequency.
This is a smoking gun feature of a coherent interaction between the cavity field and the atom.

E. Dispersive limit and qubit measurement

A dispersive limit is where the detuning between the photon frequency and the qubit frequency ∆ ≡ |ω0 − Ω| is
larger than the coupling strength, namely,

λ

|ω0 − Ω|
≪ 1 (dispersive limit). (62)

To find approximation to the Jaynes-Cummings Hamiltonian in the dispersive limit, one could apply the Schrieffer-
Wolff transformation that makes the Hamiltonian diagonal in the spin and photon basis.

Hdispersive = ω0a
†a+

Ω

2
σz +

λ2

∆
a†aσz. (63)

Exercise 2. Perform a Schrieffer-Wolff transformation on the JC Hamiltonian, Eq. 50, to derive the dispersive
Hamiltonian given in Eq. 63.

The physical interpretation of the dispersive interaction term λ2

∆ a
†aσz is two-fold. The first is that the photon

frequency is shifted up or down depending on the spin state, namely,

ω0 → ω0 +
λ2

∆
(for spin up), ω0 → ω0 −

λ2

∆
(for spin down ). (64)

Therefore, one can measure the qubit state by measuring the frequency of the cavity. This is a standard way of
measuring the transmon qubit. The second way to understand is that the transition frequency of the qubit depends
on the number of photons in populated in the cavity, namely,

Ω → Ω+
λ2

∆
n (65)

where n is the number of cavity photons. This interaction is useful for measuring the photon number distribution of
the cavity field.

Exercise 3. It turns out that the dispersive shift λ2/∆ obtained above does not accurately predict the
frequency shift observed in typical transmon experiments. This discrepancy arises because the two-level ap-
proximation is applied to the transmon Hamiltonian in Eq. 45 prior to calculating the dispersive shift. To
address this limitation, consider a cQED Hamiltonian

H = ω0a
†a+ ωtransb

†b− EJ

2
b†b†bb+ g(ab† + a†b) (66)

Note that among the quartic terms (b+ b†)4, only the terms that contain the same number of b and b†, since
the other terms will be fast rotating terms and can be neglected with RWA. Construct a Schrieffer-Wolff
transformation to transform the Hamiltonian into the dispersive form,

Hdispersive = ω′
0a

†a+
Ω′

2
σz + χ′a†aσz, (67)

and find the expression for the renormalized frequencies ω′
0 and Ω′ and the dispersive shift χ′. Compare your

results with Ref. [2].
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IV. CAVITY MAGNONICS - MAGNETIC DIPOLE INTERACTION BETWEEN MICROWAVE
PHOTONS AND MAGNONS

In the previous section, we examine how the electric field component of the microwave photons couples to the
transmon qubit. Another way of realizing the light-matter interaction is the magnetic dipole interaction. Here I
will give a brief introduction to one example of cavity magnonics setup introduced in Ref. [3]. See Fig. IVB(a) for
schematics of the setup, which consists of an easy-axis ferromagnetic insulator subject to an external static magnetic
field, placed inside of a microwave cavity. Its low-energy excitations can be modeled with the Hamiltonian,

Htot = ωb†b− g√
N

√
2

S
(b+ b†)

∑
r

Ŝz
r +HFM, (68)

with the spin Hamiltonian part of the ferromagnet,

HFM = −J
∑
⟨r,r′⟩

Ŝr · Ŝr′ −
∑
r

(KŜz2
r + γµH · Ŝr), (69)

where g = γµh
√
NS/2 is the magnetic dipole coupling strength between the cavity field and the spins, N is the

number of spins, Ŝr denotes the dimensionless spin of magnitude S at site r, b is a bosonic operator of the cavity
field with the frequency ω and the strength h, µ is the permeability, and H is the static field. J > 0 denotes the
Heisenberg-type isotropic ferromagnetic exchange interaction between the neighboring sites, K > 0 represents the
easy-axis anisotropy along the z axis, and γ is the gyromagnetic ratio for the Zeeman interaction. J has the dominant
energy scale responsible for the ferromagnetic spin ordering, whose direction is determined by the competition between
K, H, and g with weak characteristic energy scales.

A. Magnon Hamiltonian

Exercise 4. Suppose the magnetic field H = H0ŷ is sufficiently strong such that the magnetization of
the ferromagnet aligns along the y-axis. Diagonalize the spin Hamiltonian HFM by performing the following
steps: (a) apply the Holstein–Primakoff transformation to express spin operators in terms of bosonic operators,
retaining only linear terms under the low-excitation approximation; (b) perform a Fourier transformation of
the bosonic operators to define magnon modes in momentum space; and (c) apply a Bogoliubov transformation
to diagonalize the resulting quadratic magnon Hamiltonian. Compare your results with Ref. [3].

The resulting magnon Hamiltonian obtained through Exercise 4 can be written as

H =
∑
k

Ωkm̃
†
km̃k. (70)

where Ωk = 2
√
A2

k −B2 with

Ak = JSn1ζk +
KS

2
(2χ− 1), B =

KS

2
, (71)

Here, n1 is the coordination number, ζk = (1− 1
n1

∑
±δ e

ik·δ) and δ is the displacement vector to the nearest neighbors.

Note that the anisotropy term KŜz2
r contains processes that simultaneously creates and annihilates two magnons,

which is why one needs a Bogoliubov transformation to diagonalize the magnon Hamiltonian. These processes induces
a magnon squeezing, which reduces the uncertainty of the magnon along a certain quadrature below the minimum
uncertainty level. The degree of squeezing rk is

rk = log

(
Ak +B

Ak −B

)1/4

. (72)

B. Quantum optical measurement of magnon squeezing

The cavity magnonics Hamiltonian in Eq. 68 can now be written in terms of the magnonic Hamiltonian where we
keep only the uniform magnonic (Kittle) mode m̃ = m̃k=0, which coherently couples to the cavity field, reads

Hc = Ω0m̃
†m̃+ ωb†b− ig̃(m̃− m̃†)(b+ b†), (73)
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FIG. 4: [Adapted from Ref. [3]] (left) Schematic illustration of a cavity magnonics system. The green region enclosed by the
rectangles, the arrows on the grid, and the cylinders represent the cavity field, the easy-axis ferromagnet, and the coil for the
external field, respectively. (right) Excitation energies of cavity magnonics Hamiltonian as a function of χ = |γµH0|/2KS for a
fixed coupling strength g. The blue and yellow arrows indicate the vacuum Rabi splitting and the dispersive cavity frequency
shift, respectively. The dashed black line indicates the bare cavity and magnon frequencies without the interaction.

where Ω0 = KS/ sinh 2r0 and

g̃ = ger0 . (74)

Note that the effective cavity-magnon coupling strength g̃ is exponentially enhanced by the magnonic squeezing
parameter r0. The enhancement stems from the competition between the easy-axis anisotropy and the Zeeman
interaction.

The enhanced g̃ allows a quantum optical measurement of the squeezing and the large spin angular momentum of
magnons. To this end, one can tune g̃ to realize the strong coupling regime where g̃ is larger than the cavity (magnon)
decay rate, κ (Γ), but is still smaller than the cavity (magnon) frequency ω (Ω0); namely, κ,Γ ≪ g̃ ≪ ω,Ω0. On
resonance, ω ∼ Ω0, an avoided crossing occurs giving rise to the vacuum Rabi splitting (∆ω) that is determined by
the magnon squeezing, i.e., ∆ω ≃ 2ger0 . In a dispersive limit, g ≪ |ω − Ω0|, the cavity frequency ω is shifted by
2g2e2r0/∆ω|g=0 where ∆ω|g=0 is the detuning between the bare cavity and magnon frequencies. See the right panel
of Fig. IVB for the vacuum Rabi splitting and the dispersive shift of the cavity magnonics system. Therefore, by
measuring the frequency shift of the cavity field, which is a standard experimental tool in the cavity and circuit QED,
one can probe the degree of magnon squeezing.

This example highlights the power of quantum optical approaches to quantum magnetism. By leveraging the
light-matter interaction between the cavity field and collective spin excitations, one can access and measure quantum
properties of magnons, such as squeezing. Introducing a transmon qubit into the cavity magnonics setup enables
effective qubit-magnon interactions mediated by the cavity field. Drawing on the extensive toolbox developed in
cavity QED, it becomes possible to coherently control and probe the quantum states of magnons.
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