중시계 양자역학의 실험적 실현: 빛과 초전도체의 상호작용

Gil-Ho Lee

Dept. of Physics, POSTECH, Korea

The 14th School of Mesoscopic Physics: Mesoscopic Interactions

- 1. Light-superconductor interaction in mesoscopic system
- 2. Introduction to Superconductivity
- 3. Introduction to Josephson Junction
- 4. Josephson Junction with light
- 5. SC-light interaction: optical regime
- 6. SC-light interaction: microwave regime

"Light" + "Superconductor"

(v) hotspot

vortex dynamics

2. Qubit Control/Readout

(b) LC-circuit with Josephson junction

3. Non-equilibrium QM

transient high-Tc superconductivity

[Science 331, 189-191 (2011)]

[Science 342, 453-457 (2013), Nature 603, 421–426 (2022)]

Floquet state

Energy Scale Comparison

- Energy $E = hf(=\hbar\omega) = k_B T$
- Wavelength $\lambda = c/f = hc/E$

- ($E_{\rm photon}$ > $k_{\rm B}$ T)
→ non-equilibrium without
thermal excitation

항목	에너지 <i>E</i>	파장 λ	온도 <i>T</i>	
Optical photon	~1.0–3.0 eV	0.4–1.2 μm	10,000–30,000 K	
Infrared photon	~10–200 meV	6–120 μm	100–2,000 K	\succ - ($E_{\text{photon}} > \Delta$) photons break Cooper pairs
THz photon	~1–10 meV	30–300 µm	10–100 K	\rightarrow good for <i>photon sensor</i>
Superconducting gap	~0.1-1 meV (Al, Nb, etc.)		1-10 K	
Microwave photon (6 GHz)	~25 μeV	5 cm	0.3 K	$\langle \Gamma \rangle$
Dilution refrigerator temperature	~1 μeV		0.01 K	\rightarrow good for <i>qubit operation</i>

Mesoscopic System (중시계)

*system size L, coherence length L_{ϕ}

미시계 (microscopic system)

 $L \ll L_{\phi}$

중시계 (mesoscopic system)

 $L \lesssim L_{\phi}$

거시계 (macroscopic system)

 $L \gg L_{\phi}$

photon, atom, molecule, etc. $L \sim \text{\AA}$

graphene, 2DEG, nanowires, JJs $L \sim \mu m$

human, cat $L \sim m$

In a mesoscopic system, even a single photon can trigger a *nonequilibrium quantum response*.

Introduction to Superconductivity

Superconductivity (1911)

Superconductivity of Mercury (1911)

History of Superconductor

Quantum Electronics

- Study of quantum mechanical behavior of electrons in solids

BCS theory (1957)

Introduction to Josephson Junction

Superconducting Electronic Device

[Slide from Prof. 정연욱]

Tunneling Josephson Junction (JJ)

n: density of Cooper pairφ: phase of order parameterK: Coupling parameter

Equation of motion for JJ $\begin{cases}
i\hbar \frac{\partial \Psi_1}{\partial t} = U_1 \Psi_1 - K \Psi_2 \\
i\hbar \frac{\partial \Psi_2}{\partial t} = U_2 \Psi_2 - K \Psi_1
\end{cases}$ We set $\frac{U_1 + U_2}{2} = 0$, then $U_1 = \frac{qV}{2}$, $U_2 = -\frac{qV}{2}$ $\frac{\partial \Psi_{1}}{\partial t} = \frac{1}{2\sqrt{n_{1}}} e^{i\varphi_{1}} \frac{dn_{1}}{dt} + i\sqrt{n_{1}} e^{i\varphi_{1}} \frac{d\varphi_{1}}{dt} = \frac{qV}{2i\hbar} \sqrt{n_{1}} e^{i\varphi_{1}} - \frac{K}{i\hbar} \sqrt{n_{2}} e^{i\varphi_{2}} - \text{Eq. (1)}$ $\frac{\partial \Psi_{2}}{\partial t} = \frac{1}{2\sqrt{n_{2}}} e^{i\varphi_{2}} \frac{dn_{2}}{dt} + i\sqrt{n_{2}} e^{i\varphi_{2}} \frac{d\varphi_{2}}{dt} = -\frac{qV}{2i\hbar} \sqrt{n_{2}} e^{i\varphi_{2}} - \frac{K}{i\hbar} \sqrt{n_{1}} e^{i\varphi_{1}} - \text{Eq. (2)}$ (1) × $e^{-i\varphi_1}$, (2) × $e^{-i\varphi_2}$ Phase difference: $\varphi \equiv \varphi_2 - \varphi_1$

$$\frac{1}{2\sqrt{n_1}}\frac{dn}{dt} + i\sqrt{n_1}\frac{d\varphi_1}{dt} = -i\frac{qV}{2\hbar}\sqrt{n_1} + i\frac{K}{\hbar}\sqrt{n_2}e^{i(\varphi_2-\varphi_1)} - \text{Eq. (1)'}$$

$$\frac{1}{2\sqrt{n_2}}\frac{dn}{dt} + i\sqrt{n_2}\frac{d\varphi_2}{dt} = +i\frac{qV}{2\hbar}\sqrt{n_2} + i\frac{K}{\hbar}\sqrt{n_1}e^{-i(\varphi_2-\varphi_1)} - \text{Eq. (2)'}$$

DC & AC Josephson Relationship

using
$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$
,

$$\frac{1}{2\sqrt{n_1}}\frac{dn_1}{dt} + i\sqrt{n_1}\frac{d\varphi_1}{dt} = -i\frac{qV}{2\hbar}\sqrt{n_1} + i\frac{K}{\hbar}\sqrt{n_2}(\cos\varphi + i\sin\varphi) - \text{Eq. (1)''}$$

$$\frac{1}{2\sqrt{n_2}}\frac{dn_2}{dt} + i\sqrt{n_2}\frac{d\varphi_2}{dt} = +i\frac{qV}{2\hbar}\sqrt{n_2} + i\frac{K}{\hbar}\sqrt{n_1}(\cos\varphi - i\sin\varphi) - \text{Eq. (2)''}$$

• Real part of Eqs. (1)" and (2)"

by

DC Josephson relationship $I_s = I_c \sin \varphi$

• Imaginary part of Eqs. (1)" and (2)"

AC Josephson relationship
$$\frac{d\varphi}{dt} = \frac{2e}{\hbar}V$$

20

Typical Current-Voltage Characteristics of JJ

Angle Evaporation for Tunneling JJ

ZEP is an EBL resist PMGI is an EBL resist AND liftoff layer

Irradiate with electron beam

Oxidize the first layer

Various Types of Josephson Junction

Josephson Junction with light

Shapiro step (1963)

Voltage Standard (전압 표준), "AC→DC"

~1 ps-short voltage pulse generation

JAWS & RSFQ

Rapid single flux quantum (RSFQ)

- A digital logic device using Josephson pulses instead of 0/5V voltages
- Data encoding, processing, and transmission are performed with ultra-short pulses (~1 ps)
 → enabling high-speed operations (100 GHz clock speed).
- Voltage pulses travel through superconducting wires
 - \rightarrow preventing heat generation and eliminating overheating issues.

Example of RFSQ device

Terahertz Generation

• The development of THz-band generation devices is still under progress.

Intrinsic Josephson Junction

Application of THz for security

Safer to human body than X-ray

Mesa with gold contact CuO, CuO, CuO, 141 CuO, BSCCO crystal CuO₂ CuO, [U. Welp et al., 2013] 2eV dφ , 2e/h ~ 0.4836 THz/mV dt ħ

10 mV DC voltage generates ~4.8THz wave

Josephson-vortex-flow THz emssion

[M.-H. Bae et al., PRL (2007)]

SC-light interaction: optical regime

SC - Many-body interacting QM system

Spin-singlet (anti-sym.) $|S\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$

Orbital : s-wave (sym.)

10²³ Cooper pairs are *coherent*.

Particle number – quantum phase uncertainty:

 $\Delta N \Delta \phi \sim 1$

Cooper pair creation operator: $P_k^{\dagger} = c_{k,\uparrow}^{\dagger} c_{-k,\downarrow}^{\dagger}$

* Optional slide

Mean-field BCS Hamiltonian*

Electron-electron interaction via phonon exchange

BCS took *mean-field* approach, where k state depends only on the average of $k' \neq k$ states.

(Grand canonical ensemble)

Diagonalizing H_{M} *

Bogoliubon is a mixture of electron and hole.

Introduction to BCS

• Excitation in superconductor (Bogoliubov quasiparticles or 'Bogoliubon') = mixture of electron and hole in SC

 $c^{\dagger} \approx c + c^{\dagger} c^{\dagger}$

• Bogoliubon for usual s-wave SC

 $\begin{cases} \gamma_{k+}^{\dagger} = u_k \ c_{k\uparrow}^{\dagger} - v_k^* c_{-k\downarrow} & : \text{ create } k \text{ and spin } \uparrow \\ \gamma_{k-}^{\dagger} = v_k \ c_{k\uparrow} + u_k \ c_{-k\downarrow}^{\dagger} & : \text{ create } -k \text{ and spin } \downarrow \end{cases}$

,with excitation energy $E = \sqrt{\xi^2 + \Delta^2}$

- ξ : the normal single-particle energy above $E_{\rm F}$
- Δ: superconducting gap
- 1-to-1 btw. $N_s(E)$ and $N_n(\xi) : N_s(E)dE = N_n(\xi)d\xi$ If $N_n(E) = N_n(0)$, $N_s(E) = N_n(0)\frac{1}{dE/d\xi} = N_n(0)\frac{|E|}{\sqrt{E^2 - \Delta^2}}$

Tunneling Spectroscopy

thespap DOS of superimeter

Superconducting Gap

Photons Break Cooper Pairs

Microwave Kinetic Inductance Detector (MKID)

Explore content
About the journal
Publish with us
nature > latters > article
Letter | Published: 23 October 2003
A broadband superconducting detector suitable for
use in large arrays
Peter K: Day
Henry G. LeDuc. Benjamin A. Marin. Anastasios Vayonskis & Jonas Zmulifzinss
Nature 425, 817–821 (2003) | Cite this article
17k. Accesses | 6. Altmetric | Metrics

⁵⁵Fe source, which emits 5.9-keV X-rays

1,550-nm NIR Single Photon Detection

LIGHT IS A Incoherent Light mm LASER Coherent Light $p(n,\langle n\rangle)$ $\langle n \rangle = 10$ N = 7N = 4N = 2N = 3N = 40.12 Poisson laser) CCD 00 0.06 **Bose-Einstein** thermal) 0.00 5 10 15 20 0 t = 5s t = 4st = 3st = 2st = 1st = 0s

[Science 372, 409-412 (2021)]

Superconducting Nanowire Single Photon Detector (SNSPD)

APL Photonics

PERSONAL INCOME.

Research trends in single-photon detectors based on superconducting wires

FIG. 1. Overview of the superconducting nanowire single-photon detector. (a) Typical architecture of the SNSPD. This sketch omits elements of the optical cavity and electrical readout. A light spot is focused on a $10 \times 10 \,\mu m^2$ active area meander, leading to an output electrical pulse. (b) SNSPD detection process outlook. Subfigure (b) is adapted from Ref. 39.

[Single Quantum]

(iiio

Thermal Detector

- No need to collect electron
- No threshold
- Robust against impurities
- More freedom to choose material

- E_r : Photon energy
- *C* : Heat capacity
- G : Thermal conductance

Array of TES

Temperature [mK]

Graphene for Absorber

SC-light interaction: microwave regime

Quantum Computer (양자컴퓨터)

A computation device based on quantum mechanics.

Using <u>superposition</u> of quantum mechanics

Quantum parallelism (양자 평행성)

Many groups working on QC

Google – superconducting QC

Intel – Silicon-based QC

Microsoft – Topological QC

Quantum Bit, Qubit (큐빗)

Quantum LC Resonator

Josephson Inductance

Inductance describes voltage drop, *V*, induced by the change of current, dI/dt, $V = L \times (dI/dt)$.

For Josephson junction,

I changes in time

- $\rightarrow \varphi$ changes in time (DC Josephson relationship)
 - \rightarrow V appears (AC Josephson relationship)

$$\frac{\partial I}{\partial \varphi} = I_c \cos \varphi,$$

$$\frac{\partial I}{\partial t} = \frac{\partial I}{\partial \varphi} \frac{\partial \varphi}{\partial t} = I_c \cos \varphi \cdot \frac{2\pi}{\Phi_0} V, \longrightarrow V = \frac{\Phi_0}{2\pi I_c \cos \varphi} \frac{\partial I}{\partial t} = L(\varphi) \frac{\partial I}{\partial t}$$

$$\frac{\partial I}{\partial t} = \frac{\partial I}{\partial \varphi} \frac{\partial \varphi}{\partial t} = I_c \cos \varphi \cdot \frac{2\pi}{\Phi_0} V, \longrightarrow V = \frac{\Phi_0}{2\pi I_c \cos \varphi} \frac{\partial I}{\partial t} = L(\varphi) \frac{\partial I}{\partial t}$$

$$\frac{\partial I}{\partial t} = L(\varphi) \frac{\partial I}{\partial t}$$

$$\frac{\partial I}{\partial t} = L(\varphi) \frac{\partial I}{\partial t}$$

Josephson junction is a 'quantum' nonlinear inductor.

Anharmonic LC resonator

Shunting Capacitor

To minimize effect charge noise, E_C was decreased by adding big capacitor.

Coplanar Waveguide (CPW) coupled to Transmon

Air Column Resonance (기주공명)

Flux control of Transmon Frequency

Circuit QED:

Cavity QED with wires

Josephson-junction qubits

Transmission-line resonators
mediate interaction between qubits
allow qubit readout

Blais et al., Phys. Rev. A (2004)

Qubit-Resonator Interaction

Qubit and resonator are capacitively coupled.

Color: absorption through readout line

	Ia		
 	-1-20	r	10
	-8	1)	
	•		

Qubit Measurement (Dispersive regime)

Single Qubit Operation

Rotation angle = speed × duration

= area of pulse envelope

[Flux-bias control]

- Rotation around z-axis
- Time evolution give 'dynamic' phase accumulation as, $|\psi\rangle \rightarrow e^{iEt/\hbar} |\psi\rangle$.
- Then, energy difference gives phase difference between $|0\rangle$ and $|1\rangle$ as, $|0\rangle + |1\rangle \rightarrow e^{iE_0t/\hbar}|0\rangle +$ $e^{iE_1t/\hbar}|1\rangle = e^{iE_0t/\hbar}(|0\rangle +$ $e^{i(E_1-E_0)t/\hbar}|1\rangle).$
- Flux-bias control can change the qubit frequency: $\hbar \omega_q = E_1 E_0$

Qubit-Qubit Coupling

Two-Qubit Processor

Different resonators for qubit-qubit coupling and for readout of each qubit

Groen et al., Phys. Rev. Lett. (2013)

Packaging / Development Trend

The performance of qubits is tripling every year.

c.f.) Moore's Law: semiconductor integration density doubles every two years.

Hybrid system using coplanar waveguide

