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What is Mesoscopic Quantum Transport

• Mesoscopic quantum transport?

• Why ‘transport?’

→ Transport reveals information of transported objects

→ Imagine we are in a dark room!

5/21/2025 2

Figures from depositphotos.com

Spin
of the ball

Wind

Interaction b/t ball &wind



What is Mesoscopic Quantum Transport

• Mesoscopic quantum transport?

• Why ‘transport’: Transport reveals information of transported objects

• Which one is ‘quantum’: ptls are superposed, interfered, or entangled

→ New phenomena with the same game setting?

= New quantum particle!
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Quantum particles:
electrons, phonons, Cooper pairs,
and other elementary excitations,

which can be quantum mechanically
superposed, interfered, or entangled!

Quantum 
fluctuations!



What is Mesoscopic Quantum Transport

• Mesoscopic quantum transport?

• Why ‘transport’: Transport reveals information of transported objects

• Which one is ‘quantum’: ptls are superposed, interfered, or entangled

• What’s meso-scopic systems
→ Playground for quantum baseballs (not too large: macro-scopic)

but well-controllable & designable (not too small: micro-scopic)
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We can place quantum
pitchers, catchers, fans

on the field, as we want!

Competition 
b/t various 

scales matter!



Physics of MQT: perfect conductor

5/21/2025

• Perfect conductor

we assume: size of conductor, L << Lm, Lφ. But λF < W w/ subbands

Reflectionless contacts (no backscattering at contact)

𝑉

5

𝜇1 𝜇2Contact 1 Contact 2

𝑘

X

PRL 62, 300 (1989)

𝐸 𝑘

𝐼X

𝑉 = Τ𝜇1 − 𝜇2 𝑒



Physics of MQT: perfect conductor

5/21/2025

• Perfect conductor

we assume: size of conductor, L << Lm, Lφ. But λF < W w/ subbands

Reflectionless contacts (no backscattering at contact)

• Calculating the current

𝐼+ =
2𝑒

ℎ
𝑀𝜇1 & 𝐼− = −

2𝑒

ℎ
𝑀𝜇2
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𝑘

𝐸 𝑘

𝜇2

𝜇1

Current 𝐼+ carrying states

Δ𝑘 = 2𝜋/𝐿

(zero temp.)

Current 𝐼− carrying states

Opposite sign due to 
opposite group velocity



Physics of MQT: perfect conductor

5/21/2025

• Perfect conductor

we assume: size of conductor, L << Lm, Lφ. But λF < W w/ subbands

Reflectionless contacts (no backscattering at contact)

• Calculating the current

𝐼+ =
2𝑒

ℎ
𝑀𝜇1 & 𝐼− = −

2𝑒

ℎ
𝑀𝜇2

𝐼 = 𝐼+ + 𝐼− =
2𝑒

ℎ
𝑀 𝜇1 − 𝜇2 =

2𝑒2

ℎ
𝑀
𝜇1 − 𝜇2

𝑒
=
2𝑒2

ℎ
𝑀𝑉
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(zero temp.)

𝜇1 𝜇2Contact 1 Contact 2

𝑉 = Τ𝜇1 − 𝜇2 (−𝑒)

𝐼+
𝐼−

G of a perfect conductor
= integer multiple of 

conductance quantum



Physics of MQT: perfect conductor

5/21/2025

• Perfect conductor

we assume: size of conductor, L << Lm, Lφ. But λF < W w/ subbands

Reflectionless contacts (no backscattering at contact)

• Quantized conductance

• Where is the voltage drop?

Ans. at the contacts
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𝐺 =
2𝑒2

ℎ
𝑀

𝜇1 𝜇2

Contact 1 Contact 2

No matter how we define 
the voltage drop, it 

occurs at the contacts

𝜇1
𝜇2

Hot i) Translational symmetry 
is broken at contacts

ii) Contacts are irremovable

Energy dissipation
should occur to fit
into B.C. at infinity

No voltage drop

No 
resistance

Contact resistance

𝑅𝑐 =
ℎ

2𝑒2𝑀
=
12.9

𝑀
. kΩ



Physics of MQT: perfect conductor

5/21/2025

• Perfect conductor

we assume: size of conductor, L << Lm, Lφ. But λF < W w/ subbands

Reflectionless contacts (no backscattering at contact)

• Persistent Current & Scales

9

M. Büttiker, Y. Imry, R. Landauer, Josephson behavior in small normal one-dimensional rings, 
Phys. Lett. A. 96, 365 (1983)

Measuring elusive "persistent current" that flows forever, R&D Daily. October 12, (2009)

How long the time 
should be to be 

‘persistent?’



Physics of MQT: Not perfect but ballistic conductor

5/21/2025

• Ballistic conductor w/ a single impurity: size of conductor, L < Lm

• Scattering Matrix
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𝜇1 𝜇2
Contact 1 Contact 2

𝜙𝑙
in

𝜙𝑙
out 𝜙𝑟

out

𝜙𝑟
in

General solution 𝐻 𝜓 = 𝐸 𝜓 : 𝜙𝑙 = 𝐴 𝜙𝑙
i + 𝐵 𝜙𝑙

o & 𝜙𝑟 = 𝐶 𝜙𝑟
o + 𝐷 𝜙𝑟

i .

Undergraduate courses, we deal with two cases: (i) left & (ii) right incidence. We know

(i) 𝐵 = 𝑟𝐴 & 𝐶 = 𝑡𝐴 & 𝐷 = 0:               𝜙𝑙 = 𝐴 𝜙𝑙
i + 𝑟𝐴 𝜙𝑙

o &   𝜙𝑟 = 𝑡𝐴 𝜙𝑙
o

(ii) 𝐵 = 𝑡′𝐷 & 𝐶 = 𝑟′𝐷 & 𝐴 = 0:           𝜙𝑙 = 𝑡′𝐷 𝜙𝑙
o &   𝜙𝑟 = 𝑟′𝐷 𝜙𝑟

o + 𝐷 𝜙𝑟
i .

General solution is

𝜙𝑙 = 𝐴 𝜙𝑙
i + 𝑟𝐴 + 𝑡′𝐷 𝜙𝑙

o & 𝜙𝑟 = 𝑡𝐴 + 𝑟′𝐷 𝜙𝑟
o + 𝐷 𝜙𝑟

i .

𝜙𝑙 ≡ lim
𝑥→−∞

𝜓

𝜙𝑟 ≡ lim
𝑥→∞

𝜓



Physics of MQT: Not perfect but ballistic conductor

5/21/2025

• Ballistic conductor w/ a single impurity: size of conductor, L < Lm

• Scattering Matrix

11

𝜇1 𝜇2
Contact 1 Contact 2

𝜙𝑙
in

𝜙𝑙
out 𝜙𝑟

out

𝜙𝑟
in

General solution: 𝜙𝑙 = 𝐴 𝜙𝑙
i + 𝑟𝐴 + 𝑡′𝐷 𝜙𝑙

o & 𝜙𝑟 = 𝑡𝐴 + 𝑟′𝐷 𝜙𝑟
o + 𝐷 𝜙𝑟

i .
𝐵
𝐶

= 𝑟 𝑡′
𝑡 𝑟′

𝐴
𝐷

= 𝑆
𝐴
𝐷

If interested only in amplitudes of scattering states at infinity, only thing we need to know is

𝜙𝑙
i,o ≡ lim

𝑥→−∞
𝜓i,o

𝜙𝑟
i,o ≡ lim

𝑥→∞
𝜓i,o

S



• Ballistic conductor w/ a single impurity: size of conductor, L < Lm

Physics of MQT: Not perfect but ballistic conductor
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𝜇1 𝜇2
Contact 1 Contact 2S1 2

Total current at lead 1:

𝐼1 = 𝐼1
+ + 𝐼1

− =
2𝑒

ℎ
𝑀𝜇1 −

2𝑒

ℎ
𝑀𝜇1 1 − 𝑇 −

2𝑒

ℎ
𝑀𝜇2𝑇 =

2𝑒

ℎ
𝑀 𝜇1 − 𝜇2 𝑇

Total current at lead 2:

𝐼2 = 𝐼2
+ + 𝐼2

− =
2𝑒

ℎ
𝑀𝜇1𝑇 +

2𝑒

ℎ
𝑀𝜇2 1 − 𝑇 −

2𝑒

ℎ
𝑀𝜇2 =

2𝑒

ℎ
𝑀 𝜇1 − 𝜇2 𝑇

𝐼1
+ =

2𝑒

ℎ
𝑀𝜇1

𝐼2
+ =

2𝑒

ℎ
𝑀𝜇1𝑇

2𝑒

ℎ
𝑀𝜇2𝑅

𝐼2
− = −

2𝑒

ℎ
𝑀𝜇2

𝐼1
− = −

2𝑒

ℎ
𝑀𝜇1𝑅

−
2𝑒

ℎ
𝑀𝜇2𝑇

TR symmetry
is implied



Physics of MQT: Not perfect but ballistic conductor
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𝜇1 𝜇2
Contact 1 Contact 2S1 2

Total current at lead 1&2:

𝐼 = 𝐼1 = 𝐼2 =
2𝑒

ℎ
𝑀 𝜇1 − 𝜇2 𝑇 =

2𝑒2

ℎ
𝑀𝑇

𝜇1 − 𝜇2
𝑒

=
2𝑒2

ℎ
𝑀𝑇𝑉

𝐺 =
2𝑒2

ℎ
𝑀𝑇

Perfect 
conductor
𝑇 = 1

• Ballistic conductor w/ a single impurity: size of conductor, L < Lm

TR symmetry
is implied

𝐼1
+ =

2𝑒

ℎ
𝑀𝜇1

𝐼2
+ =

2𝑒

ℎ
𝑀𝜇1𝑇

2𝑒

ℎ
𝑀𝜇2𝑅

𝐼2
− = −

2𝑒

ℎ
𝑀𝜇2

𝐼1
− = −

2𝑒

ℎ
𝑀𝜇1𝑅

−
2𝑒

ℎ
𝑀𝜇2𝑇



Physics of MQT: No perfect & diffusive conductor

5/21/2025

• Back to the Ohm’s law : Lm, Lφ<<L,  λF << W

14

𝜇1 𝜇2Contact 1 Contact 2

Chemical potential

Exaggerated!
Single impurity will give 𝑇 ≲ 1



Physics of MQT: No perfect & diffusive conductor

5/21/2025

• Back to the Ohm’s law : Lm, Lφ<<L,  λF << W

15

𝜇1 𝜇2Contact 1 Contact 2

Chemical potential

Voltage

Electric field

Hot

Full of phonons

View point of Drude model
Uniform electric field due to 
series of resistivity dipoles



Physics of MQT: Not perfect but ballistic conductor

5/21/2025

• Back to the Ohm’s law : Lm, Lφ<<L,  λF << W

• Landauer formula for Ohmic regime

16

𝜇1 𝜇2Contact 1 Contact 2

𝑀~
𝑘𝐹𝑊

𝜋

𝑇 𝑁 ~
𝐿m
𝐿

𝐺 =
2𝑒2

ℎ
𝑀𝑇

𝐺 =
2𝑒2

ℎ

𝑘𝐹𝑊

𝜋

𝐿m

𝐿
=

2𝑒2𝑘𝐹𝐿m

ℎ

𝑊

𝐿

𝜎 =
2𝑒2𝑘𝐹

ℎ

ℎ𝑘𝐹𝜏

2𝜋𝑚
=

𝑘𝐹
2

𝜋

𝑒2𝜏

𝑚
=

𝑛𝑒2𝜏

𝑚

Ohm’s Law & Drude
model is derived
(Lesson) Now we know 

when MQT becomes classical 
from a microscopic view point 
& How limited Drude model is.

Landauer formalism
gives another lesson:
all you need to know for 
transport is the S-matrix.

(as long as it is a single particle physics)

S



Physics of MQT: multi-terminal transport

5/21/2025

• Büttiker formula: multi-terminal transport

𝐼𝑝 =
2𝑒

ℎ
σ𝑞 𝑇𝑞←𝑝𝜇𝑝 − 𝑇𝑝←𝑞𝜇𝑞 = σ𝑞 𝐺𝑞𝑝𝑉𝑝 − 𝐺𝑝𝑞𝑉𝑞

c.f. two-terminal case

𝐼1 =
2𝑒

ℎ
𝑇21𝜇1 − 𝑇12𝜇2 =

2𝑒

ℎ
𝑇12 𝜇1 − 𝜇2 = 𝐺𝑉

• Sum rule: σ𝑞𝐺𝑞𝑝 = σ𝑞 𝐺𝑝𝑞 to have 𝐼𝑝 = 0 for 𝑉𝑝 = 𝑉𝑞 = 𝑉0

17

𝑇21 = 𝑇12 to have
𝐼1 = 0 for 𝜇1 − 𝜇2

𝐺 =
2𝑒2

ℎ
𝑇12



Physics of MQT: multi-terminal transport

5/21/2025

• Three-terminal case

𝐼1 =
2𝑒

ℎ
𝑇21𝜇1 + 𝑇31𝜇1 − 𝑇12𝜇2 − 𝑇13𝜇3

18

3

S
𝑆 =

𝑠11 𝑠12 𝑠13
𝑠21 𝑠22 𝑠23
𝑠31 𝑠32 𝑠33

𝐵1
𝐵2
𝐵3

out

=

𝑠11 𝑠12 𝑠13
𝑠21 𝑠22 𝑠23
𝑠31 𝑠32 𝑠33

𝐴1
𝐴2
𝐴3

in

𝑇21 = 𝑠𝑎𝑏
2, a & b = ?



Physics of MQT: multi-terminal transport

5/21/2025

• Three-terminal case

𝐼1 =
2𝑒

ℎ
𝑇21𝜇1 + 𝑇31𝜇1 − 𝑇12𝜇2 − 𝑇13𝜇3

19

3

𝑆 =

𝑠11 𝑠12 𝑠13
𝑠21 𝑠22 𝑠23
𝑠31 𝑠32 𝑠33

𝐵1
𝐵2
𝐵3

out

=

𝑠11 𝑠12 𝑠13
𝑠21 𝑠22 𝑠23
𝑠31 𝑠32 𝑠33

𝐴1
𝐴2
𝐴3

in

𝑇21 = 𝑠21
2

𝐼1 =
2𝑒

ℎ
𝑇21𝜇1 + 𝑇31𝜇1 − 𝑇12𝜇2 − 𝑇13𝜇3

= 𝐺21𝜇1 + 𝐺31𝜇1 − 𝐺12𝜇2 − 𝐺13𝜇3
= 𝐺21 𝑉1 − 𝑉2 + 𝐺31(𝑉1 − 𝑉3)

𝐼1 = −𝐼3 − 𝐼2 (Kirchhoff’s Law)

3

𝐺21 𝑉1 − 𝑉2

𝐺31(𝑉1 − 𝑉3) 𝐺32(𝑉3 − 𝑉2)

Try!



Physics of MQT: finite voltage bias and temperature

5/21/2025

• Beyond the linear response regime: Kubo’s formula is not enough

→ S-matrix, energy-dependent

→ Non-zero temperature

20

𝜇1 𝜇2
S1 2

𝐼 =
2𝑒

ℎ
𝑀𝑇 𝜇1 − 𝜇2 =

2𝑒

ℎ
𝑀𝑇 𝑓1 𝐸 − 𝑓2 𝐸 𝑑𝐸

↦
2𝑒

ℎ


𝑛
න𝑇𝑛 𝐸 𝑓1 𝐸 − 𝑓2 𝐸 𝑑𝐸

Thermoelectric transport
can be dealt



Application of Landauer-Büttiker formalism

5/21/2025

• Usages of Landauer-Büttiker formalism in research (analytical)

→ Universal physics: precise S-matrix may not be required much

→ Symmetry: S-matrix can be known solely from symmetry

21

𝐸

Resonant tunneling in MQT is universal in that
particular shapes 𝑉(𝑥) or materials do not matter



Beyond coherent & metallic conductions

5/21/2025

• More about Landauer-Büttiker formalism

→ MQT is quantal: DC current = መ𝐼 , i.e., long-time average of current

→ Current shot noise is also available [M. Büttiker, PRB 46, 12485 (1992)]

→ Periodically driven quantum pumps can be dealt [M. Büttiker, (1990)]

• Beyond Landauer-Büttiker formalism: other methods for MQT

22

Formalisms Advantages Disadvantages

Landauer-Büttiker
Intuitive & quick calculations.

Finite voltage bias & temperature
Cannot deal with many-

body physics

Kubo’s linear 
response theory

Relatively easy & quick, while 
allowing many-body physics

Only allows physics around 
equilibrium states

Master equation
Allowing many-body physics & 

Nonequilibrium bias & finite temp.
Particularly useful at 

tunneling regime

Keldysh formalism All the above Not so easy for everyone



• Recap. of the last lecture: Mesoscopic Quantum Transport (MQT)

→ It has been exactly 1 year!

• MQT and low-energy theory w/ mesoscopic interactions

→ Low-energy effective theory by 𝑘 ⋅ Ԧ𝑝-method

• 𝒌 ⋅ 𝒑-method & Mesoscopic Interactions in action

→ Spin-orbit, electric & magnetic field, superconducting order

• MQT in action

→ 
𝑑𝐼

𝑑𝑉
of topological systems calculating S-matrix 

• What left beyond today’s lecture

Overview

5/21/2025 23

Mesoscopic Quantum
Transport in 2 hours!



MQT: scales matter always

• MQT in condensed matter systems under interactions?

→ Landauer-Büttiker formalism: S-matrix is the central quantity!

𝐼 =
2𝑒

ℎ


𝑛
න𝑇 𝐸 𝑓1 𝐸 − 𝑓2 𝐸 𝑑𝐸

5/21/2025 24

𝜇𝐿 𝜇𝑅

Condensed matter’s 
S-matrix?



MQT: scales matter always

• MQT in condensed matter systems under interactions?

→ Current at (nearly) zero temp.

𝐼 = 𝐼 𝑉 =
2𝑒

ℎ
න
𝜇𝑅

𝜇𝐿

𝑇 𝐸 𝑑𝐸

→ Differential conductance at (nearly) zero temp.

𝑑𝐼

𝑑𝑉
=

𝐼 𝑉+𝑑𝑉 −𝐼 𝑉

𝑑𝑉
=

2𝑒2

ℎ
𝑇 𝜇𝐿

5/21/2025 25

𝜇𝐿 𝜇𝑅

Energy

𝜇𝑅 + 𝑒𝑉 = 𝜇𝐿
𝜇𝑅

S-matrix only around
particular energies

Yields selected 
quantum propagations



MQT and low-energy theory w/ mesoscopic interactions

• Low-energy effective Hamiltonian

→ In the case of graphene 

5/21/2025 26

n=1
l=0
1s

n=2
l=0
2s

n=2
l=1

2px,y,z

<Top view>

2s, 2px, 2py

2pz

n=2

12 electrons in unit cell

2pz

EF

n=1



MQT and low-energy theory w/ mesoscopic interactions

• Low-energy effective Hamiltonian

→ In the case of graphene 

5/21/2025 27

EF

Conduction occurs
around this energy

Around EF

2D Dirac
Fermions



EF

Conduction occurs
around this energy

MQT and low-energy theory w/ mesoscopic interactions

• Low-energy effective Hamiltonian

→ In the case of graphene 

5/21/2025 28

Reduced
degree of 
freedom
around EF

Back gate

E-field

Mesoscopic Interaction
breaks Inversion Symmetry

Mesoscopic Interaction
≠ interaction w/ bare electrons



MQT and low-energy theory w/ mesoscopic interactions

• Low-energy effective Hamiltonian

→ In the case of WSe2, 2D Transition Metal Dichalcogenides (TMD)

5/21/2025 29

JOURNAL OF APPLIED PHYSICS 117, 084310 (2015)

Transition Metal

chalcogenide

E-fie
ld



𝑘 ⋅ Ԧ𝑝-method in action: formalism

• Low-energy effective Hamiltonian: 𝑘 ⋅ Ԧ𝑝-method

→ How does a system looks around a particular momentum 

5/21/2025 30

Around large k
this looks 

Around small k
this looks 



𝑘 ⋅ Ԧ𝑝-method in action: formalism

• Low-energy effective Hamiltonian: 𝑘 ⋅ Ԧ𝑝-method

→ How does a system looks around a particular momentum 𝑘

→ There will be eigenstates 𝑛𝑘 of the full Hamiltonian 𝐻

𝐻 𝑘 𝑛𝑘 = 𝐸𝑛 𝑘 𝑛𝑘

→ Select subspace of the full Hilbert space with n’s such that

𝐸𝑛 𝑘 is around Fermi energy. Let’s say those are n=1,2

→ Matrix representation of the low-energy Hamiltonian around EF

5/21/2025 31

𝐻eff Ԧ𝑝 =
1𝑘 𝐻(𝑘 + 𝑝) 1𝑘 1𝑘 𝐻(𝑘 + 𝑝) 2𝑘

2𝑘 𝐻(𝑘 + 𝑝) 1𝑘 2𝑘 𝐻(𝑘 + 𝑝) 2𝑘

You can choose n’s as 
many as you want



𝑘 ⋅ Ԧ𝑝-method in action: formalism

• Low-energy effective Hamiltonian: 𝑘 ⋅ Ԧ𝑝-method

• Philosophy behind 𝑘 ⋅ Ԧ𝑝-method

→ Put Ԧ𝑝 = 0

→ If Ԧ𝑝 is small,

𝑛, 𝑘 + Ԧ𝑝 ≈ 𝑛, 𝑘

→ Accordingly,

5/21/2025 32

𝐻eff Ԧ𝑝 =
1𝑘 𝐻(𝑘 + 𝑝) 1𝑘 1𝑘 𝐻(𝑘 + 𝑝) 2𝑘

2𝑘 𝐻(𝑘 + 𝑝) 1𝑘 2𝑘 𝐻(𝑘 + 𝑝) 2𝑘

𝐻eff 0 =
1𝑘 𝐻(𝑘) 1𝑘 1𝑘 𝐻(𝑘) 2𝑘

2𝑘 𝐻(𝑘) 1𝑘 2𝑘 𝐻(𝑘) 2𝑘
=

𝐸1𝑘 0

0 𝐸2𝑘

Exact

1st order Perturbation
(2nd order is often used)

𝐻eff Ԧ𝑝 =
1𝑘 𝐻(𝑘 + 𝑝) 1𝑘 1𝑘 𝐻(𝑘 + 𝑝) 2𝑘

2𝑘 𝐻(𝑘 + 𝑝) 1𝑘 2𝑘 𝐻(𝑘 + 𝑝) 2𝑘



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• 2D Transition Metal Dichalcogenides

→ PRL 108, 196802 (2012)

𝜏 = 1(−1) for K(K’)-valley

Coupled Spin and Valley Physics in Monolayers 
of MoS2 and Other Group-VI Dichalcogenides

Mesoscopic interaction
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𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H
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→ PRL 108, 196802 (2012)

𝜏 = 1(−1) for K(K’)-valley



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• 2D Transition Metal Dichalcogenides

→ PRL 108, 196802 (2012)

Counting Symmetry
e.g., Time-reversal symmetry

𝛩 = 𝑖 ො𝜎𝑦𝐾? 𝐻0, 𝛩 = 0?

𝛩−1 𝐻0
𝜏 𝛩 = ො𝜎𝑦 𝐻0

𝜏 ∗
ො𝜎𝑦 = 𝐻0

−𝜏?

where 𝛩−1 = −𝑖 ො𝜎𝑦𝐾.
ො𝜎𝑦 𝐻0

𝜏 ∗
ො𝜎𝑦 =

ො𝜎𝑦 𝑎𝑡 −𝑖𝜏𝜕𝑥 ො𝜎𝑥 − 𝑖𝜕𝑦 ො𝜎𝑦 +
Δ

2
ො𝜎𝑧

∗

ො𝜎𝑦

= ො𝜎𝑦 𝑎𝑡 𝑖𝜏𝜕𝑥 ො𝜎𝑥 − 𝑖𝜕𝑦 ො𝜎𝑦 +
Δ

2
ො𝜎𝑧 ො𝜎𝑦

= 𝑎𝑡 −𝑖𝜏𝜕𝑥 ො𝜎𝑥 − 𝑖𝜕𝑦 ො𝜎𝑦 −
Δ

2
ො𝜎𝑧 ≠ 𝐻0

−𝜏

𝜏 = 1(−1) for K(K’)-valley



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• 2D Transition Metal Dichalcogenides

→ PRL 108, 196802 (2012)

Counting Symmetry
e.g., Time-reversal symmetry
𝛩 = 𝑖 ො𝜎𝑦𝐾 is not so correct, ො𝜎’s are 

about orbitals. Hence, 𝛩 ↦ 𝐾 with 
𝛩2 = 1. See

𝛩 𝜙𝑣
𝜏 = 𝜙𝑣

−𝜏 .
Now,

𝛩−1 𝐻0
𝜏 𝛩 = 𝑎𝑡 −𝑖𝜏𝜕𝑥 ො𝜎𝑥 − 𝑖𝜕𝑦 ො𝜎𝑦 +

Δ

2
ො𝜎𝑧

∗

= 𝑎𝑡 −𝑖(−𝜏)𝜕𝑥ෝ𝜎𝑥 − 𝑖𝜕𝑦ෝ𝜎𝑦 +
Δ
2
ෝ𝜎𝑧

= 𝐻0
−𝜏

Time-reversal of low-energy H of 
K-valley is that of K’-valley

𝜏 = 1(−1) for K(K’)-valley



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• 2D Transition Metal Dichalcogenides

→ PRL 108, 196802 (2012)

Counting Symmetry
e.g., Time-reversal symmetry
Now you see 𝛩 = 𝑖 Ƹ𝑠𝑦𝐾 is correct, 

Ƹ𝑠’s are about spins. Check

𝛩−1 𝐻𝜏 𝛩 = Ƹ𝑠𝑦 𝐻0
𝜏 − 𝜆𝜏

ෝ𝜎𝑧−1

2
Ƹ𝑠𝑧
∗
Ƹ𝑠𝑦

= 𝐻0
−𝜏 + Ƹ𝑠𝑦 −𝜆𝜏

ෝ𝜎𝑧−1

2
Ƹ𝑠𝑧 Ƹ𝑠𝑦

= 𝐻0
−𝜏 − 𝜆 −𝜏

ෝ𝜎𝑧−1

2
Ƹ𝑠𝑧 = 𝐻−𝜏

Time-reversal of low-energy H of 
K-valley is that of K’-valley

𝜏 = 1(−1) for K(K’)-valley



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• Graphene: 2nd order perturbation theory

→ PRB 74, 165310 (2006); Mesoscopic interactions are

𝑉 = 𝐻𝑆𝑂 + 𝐻𝐸𝐹 =
1

2 𝑚𝑒𝑐
2 𝛻 × Ԧ𝑝 ⋅ Ԧ𝑆 + 𝑒𝐸

𝑖
𝑧𝑖

→ The 1st order perturbation in 𝑘 ⋅ Ԧ𝑝-method vanishes

→ The 2nd degenerate state perturbation

𝐻𝑚,𝑛
(2)

= 
𝑙∉𝐷

𝑚(0) 𝑉 𝑙(0) 𝑙(0) 𝑉 𝑛(0)

𝐸𝐸 − 𝐸𝑙
(0)

→ Low-energy sector 

= 
𝐾, 𝑝𝑧𝐴, ↑ , 𝐾, 𝑝𝑧𝐴, ↓ , 𝐾

′, 𝑝𝑧𝐴, ↑ , 𝐾
′, 𝑝𝑧𝐴, ↓ ,

𝐾, 𝑝𝑧𝐵, ↑ , 𝐾, 𝑝𝑧𝐵, ↓ , 𝐾
′, 𝑝𝑧𝐵, ↑ , 𝐾

′, 𝑝𝑧𝐵, ↓
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𝑖 is the lattice 
site index

Leonard I. Schiff, Quantum Mechanics, 
McGraw-Hill, New York, (1968)

Intrinsic and Rashba spin-orbit 
interactions in graphene sheet

Back gate

E-field



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• Graphene: 2nd order perturbation theory

→ PRB 74, 165310 (2006); Mesoscopic interactions are

𝑉 = 𝐻𝑆𝑂 + 𝐻𝐸𝐹 =
1

2 𝑚𝑒𝑐
2 𝛻 × Ԧ𝑝 ⋅ Ԧ𝑆 + 𝑒𝐸

𝑖
𝑧𝑖

→ The 1st order perturbation in 𝑘 ⋅ Ԧ𝑝-method vanishes

→ The 2nd degenerate state perturbation

𝐻𝑚,𝑛
(2)

= 
𝑙∉𝐷

𝑚(0) 𝑉 𝑙(0) 𝑙(0) 𝑉 𝑛(0)

𝐸𝐸 − 𝐸𝑙
(0)

→ Low-energy sector 

= 
𝐾, 𝑝𝑧𝐴, ↑ , 𝐾, 𝑝𝑧𝐴, ↓ , 𝐾

′, 𝑝𝑧𝐴, ↑ , 𝐾
′, 𝑝𝑧𝐴, ↓ ,

𝐾, 𝑝𝑧𝐵, ↑ , 𝐾, 𝑝𝑧𝐵, ↓ , 𝐾
′, 𝑝𝑧𝐵, ↑ , 𝐾

′, 𝑝𝑧𝐵, ↓
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𝑖 is the lattice 
site index

Back gate

E-field

Intrinsic and Rashba spin-orbit 
interactions in graphene sheet



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• Graphene: 2nd order perturbation theory

→ PRB 74, 165310 (2006); Mesoscopic interactions are

𝑉 = 𝐻𝑆𝑂 + 𝐻𝐸𝐹 =
1

2 𝑚𝑒𝑐
2 𝛻 × Ԧ𝑝 ⋅ Ԧ𝑆 + 𝑒𝐸

𝑖
𝑧𝑖

→ The 2nd degenerate state perturbation

𝐻eff = −𝜆𝑆𝑂 + 𝜆𝑆𝑂𝜎𝑧𝜏𝑧𝑠𝑧 + 𝜆𝑅 𝜎𝑥𝜏𝑧𝑠𝑦 − 𝜎𝑧𝑠𝑥

→ Dirac point at K(K’)-valley opens a gap 𝐸𝑔 = 2 𝜆𝑆𝑂 − 𝜆𝑅

→ 2𝜆𝑆𝑂 =
𝑠

9 𝑠𝑝𝜎 2 𝜉
2 ≈ 0.00114 meV ≈ 𝑘𝐵 × 0.0132 K

→ 𝜆𝑅 =
𝑒𝐸𝑧0

3 𝑠𝑝𝜎
𝜉 ∝ 𝐸
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𝑖 is the lattice 
site index

Back gate

E-field

Mesoscopic interactions depend on
the shape of wavefunctions at low-energy

Intrinsic and Rashba spin-orbit 
interactions in graphene sheets

Intrinsic and Rashba spin-orbit 
interactions in graphene sheet



𝑘 ⋅ Ԧ𝑝-method in action: Low-energy effective H

• Graphene as 2D Topological Insulator (TI)

→ PRL 95, 226801 (2005); Quantum Spin Hall Effect in Graphene

→ PRL 95, 146802 (2005); Z2 Topological Order and the Quantum Spin Hall Effect

→ Basically, 2D TIs realize

the effective H of graphene
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𝜆𝑆𝑂 ≈ 𝑘𝐵 × 0.0066 K

𝜆𝑅 ≈ 𝑘𝐵 × 0.129 K

Τ𝜆𝑅 𝜆𝑆𝑂 ≈ 20



What is Mesoscopic Quantum Transport

• Low-energy effective Hamiltonian: 𝑘 ⋅ Ԧ𝑝-method

→ 1D InAs Nanowire?

→ Nano Letters 16, 5135 (2016)
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𝑝𝑥
Direct Measurements of Fermi Level Pinning at the 

Surface of Intrinsically n-Type InGaAs Nanowires

Select low-energy sector with
𝑝𝑥 = 0, ↑ & 𝑝𝑥 = 0, ↓

𝐻eff 𝑝𝑥 =
0, ↑ 𝐻(𝑝𝑥) 0, ↑ 0, ↑ 𝐻(𝑝𝑥) 0, ↓

0, ↓ 𝐻(𝑝𝑥) 0, ↑ 0, ↓ 𝐻(𝑝𝑥) 0, ↓



What is Mesoscopic Quantum Transport

• Low-energy effective Hamiltonian: 𝑘 ⋅ Ԧ𝑝-method

→ 1D InAs Nanowire?

• Mesoscopic Interaction ≠ interaction w/ bare electrons

→ Very high Landé g-factor, 𝑔 ≈ 14 (𝑔 ≈ 2 for bare electrons)

𝐻𝑍 = − Ԧ𝜇 ⋅ 𝐵 = 𝑔𝜇𝐵 Ԧ𝑆 ⋅ 𝐵

→ Tunable Landé g-factor: PRB 72, 201307(R) (2005)

→ Tunable Spin-orbit interaction: Nanoscale Adv. 4, 2642 (2022)

5/21/2025 44

Select low-energy sector with
𝑝𝑥 = 0, ↑ & 𝑝𝑥 = 0, ↓

𝐻eff 𝑝𝑥 =
0, ↑ 𝐻(𝑝𝑥) 0, ↑ 0, ↑ 𝐻(𝑝𝑥) 0, ↓

0, ↓ 𝐻(𝑝𝑥) 0, ↑ 0, ↓ 𝐻(𝑝𝑥) 0, ↓



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Reproducing journal papers: Quantum Transport in TSC

→ PRL 102, 216403 (2009), PRL 102, 216404 (2009), and PRL 103, 237001 (2009)

5/21/2025 45



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Quantum Transport in TSC

→ Majorana zero modes (MZM) always come in pair
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0 vortex
0 MZMs

1 vortex
2 MZMs

2 vortex
2 MZMs

3 vortex
4 MZMs

Quantization condition along BC
𝑘𝐿 + 𝜋 + 𝑛𝑣𝜋 = 2𝑚𝜋,

where 𝑛𝑣 is # of vortices.

Conductance
quantum, as
MZM = equal 
superposition 
of electron & 

hole



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• PRL 102, 216404 (2009)
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3D

𝑘 ⋅ Ԧ𝑝-method, around 𝑘𝑥 = 0

𝑀 𝑥, 𝑦 = ቊ
−𝑀, 𝑦 < 0
0, 𝑦 > 0

Δ 𝑥, 𝑦 = ቊ
0, 𝑦 < 0

Δe𝑖𝜑(𝑥,𝑦), 𝑦 > 0

3D TI

SM↓

𝑥

𝑦



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Low-energy Hamiltonian
𝐻 𝑝𝑥 = 0

=
−𝑀𝜎𝑧 − 𝑖ℏ𝑣𝐹𝜕𝑦𝜎𝑦 0

0 −𝑀𝜎𝑧 + 𝑖ℏ𝑣𝐹𝜕𝑦𝜎𝑦
Θ −𝑦 +

−𝑖ℏ𝑣𝐹𝜕𝑦𝜎𝑦 Δe𝑖𝜑

Δe−𝑖𝜑 +𝑖ℏ𝑣𝐹𝜕𝑦𝜎𝑦
Θ 𝑦

=

−𝑀 −ℏ𝑣𝐹𝜕𝑦
ℏ𝑣𝐹𝜕𝑦 𝑀

0 0
0 0

0 0
0 0

−𝑀 ℏ𝑣𝐹𝜕𝑦
−ℏ𝑣𝐹𝜕𝑦 𝑀

Θ −𝑦 +

0 −ℏ𝑣𝐹𝜕𝑦
ℏ𝑣𝐹𝜕𝑦 0

Δe𝑖𝜑 0
0 Δe𝑖𝜑

Δe−𝑖𝜑 0
0 Δe−𝑖𝜑

0 −ℏ𝑣𝐹𝜕𝑦
ℏ𝑣𝐹𝜕𝑦 0

Θ 𝑦
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Zero-energy solutions
Region: 𝑦 < 0

𝜓 𝑦 ∝ 𝑒
𝑀
ℏ𝑣𝐹

𝑦
𝐴

1
−1
0
0

+ 𝐵

0
0
1
1

Zero-energy solutions
Region: 𝑦 > 0

𝜓 𝑦 ∝ 𝑒
−

Δ
ℏ𝑣𝐹

𝑦
𝐶

𝑒
𝑖𝜑
2

0
0

𝑒−
𝑖𝜑
2

+ 𝐷

0

𝑒
𝑖𝜑
2

−𝑒−
𝑖𝜑
2

0



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Wave function matching at y=0

𝐴

1
−1
0
0

+ 𝐵

0
0
1
1

= 𝐶

𝑒
𝑖𝜑
2

0
0

𝑒−
𝑖𝜑
2

+ 𝐷

0

𝑒
𝑖𝜑
2

−𝑒−
𝑖𝜑
2

0

⇔

0
0
0
0

=

1 0
−1 0

−𝑒
𝑖𝜑
2 0

0 −𝑒
𝑖𝜑
2

0 1
0 1

0 𝑒−
𝑖𝜑
2

−𝑒−
𝑖𝜑
2 0

𝐴
𝐵
𝐶
𝐷

det ෨𝑄 = 0⇔ There exists the topological zero-energy state.

𝐴 = −𝑒
𝑖𝜑
2 , 𝐵 = −𝑒−

𝑖𝜑
2 , 𝐶 = −1, 𝐷 = 1
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෨𝑄

3D TI

SM↓

𝑥

𝑦

3D TI



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Wave function matching at y=0

𝐴

1
−1
0
0

+ 𝐵

0
0
1
1

= 𝐶

𝑒
𝑖𝜑
2

0
0

𝑒−
𝑖𝜑
2

+ 𝐷

0

𝑒
𝑖𝜑
2

−𝑒−
𝑖𝜑
2

0

⇔

0
0
0
0

=

1 0
−1 0

−𝑒
𝑖𝜑
2 0

0 −𝑒
𝑖𝜑
2

0 1
0 1

0 𝑒−
𝑖𝜑
2

−𝑒−
𝑖𝜑
2 0

𝐴
𝐵
𝐶
𝐷

det ෨𝑄 = 0⇔ There exists the topological zero-energy state.

𝐴 = 𝑒
𝑖𝜑
2 , 𝐵 = 𝑒−

𝑖𝜑
2 , 𝐶 = 1, 𝐷 = −1
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෨𝑄

𝜓 𝑦 ∝ 𝑒
−

Δ
ℏ𝑣𝐹

𝑦

𝑒
𝑖𝜑
2

−𝑒
𝑖𝜑
2

𝑒−
𝑖𝜑
2

𝑒−
𝑖𝜑
2

If 𝑀 = Δ, analytical expression is simple

Try checking  Ξ𝜓 𝑦 = 𝜓 𝑦 : Majorana mode



3D

MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Low-energy Hamiltonian: chiral Majorana mode

𝐻eff 𝑝𝑥 = න
−∞

∞

𝜓+ 𝑦 𝐻 𝑝𝑥, −𝑖ℏ𝜕𝑦 𝜓 𝑦 𝑑𝑦 ∝ ℏ𝑣𝐹𝑝𝑥

• Recall basis of the chiral Majorana mode
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𝜓 𝑦 ∝ 𝑒
−

Δ

ℏ𝑣𝐹
𝑦

𝑒
𝑖𝜑

2

−𝑒
𝑖𝜑

2

𝑒−
𝑖𝜑

2

𝑒−
𝑖𝜑

2

, where  𝜑 = 𝜑(Ԧ𝑟) and  Ԧ𝑟 ∈ 𝑆

𝜑 = 0

𝜑 = 2𝜋

For 𝜑 ↦ 𝜑 + 2𝜋, 𝜓 𝑦 accumulates 𝜋-phase

For 𝜑 ↦ 𝜑 + 2𝜋, 

𝑒
𝑖𝜑

2

−𝑒
𝑖𝜑

2

𝑒−
𝑖𝜑

2

𝑒−
𝑖𝜑

2

↦ −

𝑒
𝑖𝜑

2

−𝑒
𝑖𝜑

2

𝑒−
𝑖𝜑

2

𝑒−
𝑖𝜑

2



3D

MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Low-energy Hamiltonian: chiral Majorana mode

𝐻eff 𝑝𝑥 = න
−∞

∞

𝜓+ 𝑦 𝐻 𝑝𝑥, −𝑖ℏ𝜕𝑦 𝜓 𝑦 𝑑𝑦 ∝ ℏ𝑣𝐹𝑝𝑥

• The quantization condition:

as 𝜓 𝑦 accumulates 𝜋-phase For 𝜑 ↦ 𝜑 + 2𝜋,

𝑘𝐿 + 𝜋 + 𝑛𝑣𝜋 = 2𝑚𝜋
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Berry phase
Below spinor rotates along boundary

𝜓 𝑦 ∝ 𝑒
−

Δ
ℏ𝑣𝐹

𝑦

𝑒
𝑖𝜑
2

−𝑒
𝑖𝜑
2

𝑒−
𝑖𝜑
2

𝑒−
𝑖𝜑
2

𝜑 = 0

𝜑 = 2𝜋



3D

MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Low-energy Hamiltonian: chiral Majorana mode

𝐻eff 𝑝𝑥 = න
−∞

∞

𝜓+ 𝑦 𝐻 𝑝𝑥, −𝑖ℏ𝜕𝑦 𝜓 𝑦 𝑑𝑦 ∝ ℏ𝑣𝐹𝑝𝑥

• The quantization condition:

𝑘𝐿 + 𝜋 + 𝑛𝑣𝜋 = 2𝑚𝜋

• Quantized Energies

𝐸𝑚 = ℏ𝑣𝐹𝑘𝑚

= 2𝑚 − 1 − 𝑛𝑣
𝜋ℏ𝑣𝐹

𝐿
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3D

MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Low-energy Hamiltonian: chiral Majorana mode

𝐻eff 𝑝𝑥 = න
−∞

∞

𝜓+ 𝑦 𝐻 𝑝𝑥, −𝑖ℏ𝜕𝑦 𝜓 𝑦 𝑑𝑦 ∝ ℏ𝑣𝐹𝑝𝑥

• The quantization condition:

𝑘𝐿 + 𝜋 + 𝑛𝑣𝜋 = 2𝑚𝜋

• Quantized Energies

𝐸𝑚 = ℏ𝑣𝐹𝑘𝑚

= 2𝑚 − 1 − 𝑛𝑣
𝜋ℏ𝑣𝐹

𝐿
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Conductance
quantum, as
MZM = equal 
superposition 
of electron & 

hole



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Try: derive the low-energy Hamiltonian of below 

using 𝑘 ⋅ Ԧ𝑝-method (it should be chiral electron & hole modes)
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3D TI

M↑M↓

𝑥

𝑦



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Mesoscopic Quantum Transport in TSC using S-matrix
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MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Symmetry of Sin-matrix: particle-hole

→ 𝛹𝑖𝑛
𝐸 = 𝜙𝑎

𝑒 𝜙𝑎
𝑒 + 𝜙𝑎

ℎ 𝜙𝑎
ℎ is an incoming state at energy 𝐸.

i.e., 𝐻 𝛹𝑁 = 𝐸 𝛹𝑁 with 𝐻 𝛯 𝛹𝑁 = − 𝛯 𝐻 𝛯−1 𝛯 𝛹𝑁 = −𝐸 𝛯 𝛹𝑁

∴ 𝛯 𝛹𝑁 is the energy eigenstate of −𝐸 and it’s an incoming state.

c.f., 𝛯 𝛹𝑁 = 𝛯 𝜙𝑎
𝑒 𝜙𝑎

𝑒 + 𝜙𝑎
ℎ 𝜙𝑎

ℎ = 𝜙𝑎
ℎ ∗

𝜙𝑎
𝑒 + 𝜙𝑎

𝑒 ∗ 𝜙𝑎
ℎ

∴ given incoming 
𝜙𝑎
𝑒

𝜙𝑎
ℎ at 𝐸, incoming at −𝐸 is known 

𝜙𝑎
ℎ ∗

𝜙𝑎
𝑒 ∗

5/21/2025 57

𝜙𝑎
𝑒

𝜙𝑎
ℎ

𝜓𝑏

𝜓𝑐

Sin



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Symmetry of Sin-matrix: particle-hole

→ 𝛹in
𝐸 = 𝜙𝑎

𝑒 𝜙𝑎
𝑒 + 𝜙𝑎

ℎ 𝜙𝑎
ℎ is an incoming state at energy 𝐸.

i.e., 𝐻 𝛹in
𝐸 = 𝐸 𝛹in

𝐸 with 𝐻 𝛯 𝛹in
𝐸 = − 𝛯 𝐻 𝛯−1 𝛯 𝛹in

𝐸 = −𝐸 𝛯 𝛹in
𝐸

∴ 𝛯 𝛹in
𝐸 is the energy eigenstate of −𝐸 and it’s an incoming state.

c.f., 𝛹in
−𝐸 = 𝛯 𝜙𝑎

𝑒 𝜙𝑎
𝑒 + 𝜙𝑎

ℎ 𝜙𝑎
ℎ = 𝜙𝑎

ℎ ∗
𝜙𝑎
𝑒 + 𝜙𝑎

𝑒 ∗ 𝜙𝑎
ℎ

∴ given incoming 
𝜙𝑎
𝑒

𝜙𝑎
ℎ at 𝐸, incoming at −𝐸 is known 

𝜙𝑎
ℎ ∗

𝜙𝑎
𝑒 ∗
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𝜙𝑎
𝑒

𝜙𝑎
ℎ

𝜓𝑏

𝜓𝑐

Sin



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Symmetry of Sin-matrix: particle-hole

→ 𝛹𝑏,𝑐
𝐸 = 𝜓𝑏,𝑐 𝜓𝑏,𝑐 is an outgoing state.

𝛯 𝛹𝑏,𝑐
𝐸 is the energy eigenstate of −𝐸 and it’s an incoming state.

c.f., 𝛹𝑏,𝑐
−𝐸 = 𝛯 𝜓𝑏,𝑐 𝜓𝑏,𝑐 = 𝜓𝑏,𝑐

∗ 𝜓𝑏,𝑐

∴ given outgoing 
𝜓𝑏

𝜓𝑐
at 𝐸, outgoing at −𝐸 is known 

𝜓𝑏
∗

𝜓𝑐
∗
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𝜙𝑎
𝑒

𝜙𝑎
ℎ

𝜓𝑏

𝜓𝑐

Sin



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Symmetry of Sin-matrix: particle-hole

→ given incoming 
𝜙𝑎
𝑒

𝜙𝑎
ℎ at 𝐸, incoming at −𝐸 is known 

𝜙𝑎
ℎ ∗

𝜙𝑎
𝑒 ∗

→ given outgoing 
𝜓𝑏

𝜓𝑐
at 𝐸, outgoing at −𝐸 is known 

𝜓𝑏
∗

𝜓𝑐
∗

Hence, 
𝜓𝑏
∗

𝜓𝑐
∗ = 𝑆in −𝐸

𝜙𝑎
ℎ ∗

𝜙𝑎
𝑒 ∗

⇔
𝜓𝑏

𝜓𝑐
= 𝑆in

∗ −𝐸
0 1
1 0

𝜙𝑎
𝑒

𝜙𝑎
ℎ
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𝜙𝑎
𝑒

𝜙𝑎
ℎ

𝜓𝑏

𝜓𝑐

Sin



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Symmetry of Sin-matrix: particle-hole

→ 𝑆in = 𝑆in
∗ 0 1

1 0
and by using unitarity. The sign ambiguity & 𝛼 is 

undetermined but does not affect the conductance.

→ Try!
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𝜙𝑎
𝑒

𝜙𝑎
ℎ

𝜓𝑏

𝜓𝑐

Sin



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Symmetry of Sout-matrix: time-reversal

→ Just use time-reversal symmetry!

→ Try it! (You’ve learned how to apply the time-reversal operator 

to a low-energy Hamiltonian & S-matrix)
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𝜙𝑑
𝑒

𝜙𝑑
ℎ

𝜓𝑏

𝜓𝑐

Sout

Sout Sin Sout’ Sin’

time-reversal



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• SM-matrix

→ Just picking up phases with scattering. But we know

• S-matrix
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𝛽𝑏 − 𝛽𝑐 = 𝑘𝐿 + 𝜋 + 𝑛𝑣𝜋 =
𝐸𝐿

ℏ𝑣𝐹
+ 𝜋 + 𝑛𝑣𝜋

𝜓𝑏

𝜓𝑐 out

= 𝑒𝑖𝛽𝑏 0
0 𝑒𝑖𝛽𝑐

𝜓𝑏

𝜓𝑐 in

𝜙𝑑
𝑒

𝜙𝑑
ℎ

𝜓𝑏

𝜓𝑐

Sout

𝜙𝑎
𝑒

𝜙𝑎
ℎ

𝜓𝑏

𝜓𝑐

SinSM

𝑆 =
1

2

𝑒𝑖 𝛼+𝛼
′
𝑒𝑖𝛽𝑏 − 𝑒𝑖𝛽𝑐 𝑒−𝑖 𝛼−𝛼

′
𝑒𝑖𝛽𝑏 + 𝑒𝑖𝛽𝑐

𝑒𝑖 𝛼−𝛼
′
𝑒𝑖𝛽𝑏 + 𝑒𝑖𝛽𝑐 𝑒−𝑖 𝛼+𝛼

′
𝑒𝑖𝛽𝑏 − 𝑒𝑖𝛽𝑐



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• SM-matrix

→ Just picking up phases with scattering. But we know

• S-matrix
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𝛽𝑏 − 𝛽𝑐 = 𝑘𝐿 + 𝜋 + 𝑛𝑣𝜋 =
𝐸𝐿

ℏ𝑣𝐹
+ 𝜋 + 𝑛𝑣𝜋

𝜓𝑏

𝜓𝑐 out

= 𝑒𝑖𝛽𝑏 0
0 𝑒𝑖𝛽𝑐

𝜓𝑏

𝜓𝑐 in

𝑆 =
1

2

𝑒𝑖 𝛼+𝛼
′
𝑒𝑖𝛽𝑏 − 𝑒𝑖𝛽𝑐 𝑒−𝑖 𝛼−𝛼

′
𝑒𝑖𝛽𝑏 + 𝑒𝑖𝛽𝑐

𝑒𝑖 𝛼−𝛼
′
𝑒𝑖𝛽𝑏 + 𝑒𝑖𝛽𝑐 𝑒−𝑖 𝛼+𝛼

′
𝑒𝑖𝛽𝑏 − 𝑒𝑖𝛽𝑐

𝜙𝑑
𝑒

𝜙𝑑
ℎ

𝜙𝑎
𝑒

𝜙𝑎
ℎ

S

𝜙𝑑
𝑒

𝜙𝑑
ℎ = 𝑆

𝜙𝑎
𝑒

𝜙𝑎
ℎ , 𝑆 =

𝑆𝑒𝑒 𝑆𝑒ℎ
𝑆ℎ𝑒 𝑆ℎℎ



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Quantum Transport using Landauer-Büttiker

𝐼 = 𝐼 𝑉 =
𝑒

ℎ
න
𝜇𝑅

𝜇𝐿

𝑇 𝐸 𝑑𝐸 =
𝑒2

ℎ
𝑇𝑉

→ Charge transmission into Superconductor

𝑇 = 1 − 𝑆𝑒𝑒
2 + 𝑆ℎ𝑒

2 = 1 + 𝑆ℎ𝑒
2 − 1 + 𝑆ℎ𝑒

2 = 2 𝑆ℎ𝑒
2
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Negligible energy 
dependence of 𝑇 𝐸

1e
1e

1h

from unitarity, 𝑆𝑒𝑒
2 + 𝑆ℎ𝑒

2 = 1

Finally,
𝑑𝐼

𝑑𝑉
=

2𝑒2

ℎ
𝑆ℎ𝑒

2 =
2𝑒2

ℎ
sin2

𝑛𝑣𝜋

2
+

𝑒𝑉𝐿

2ℏ𝑣𝐹

Electrons are incident at 𝐸 = 𝑒𝑉

𝐺 0 =
2𝑒2

ℎ
sin2

𝑛𝑣𝜋

2

𝑒𝑉

𝑑𝐼

𝑑𝑉

𝜋ℏ𝑣𝐹

𝐿

Odd 𝑛𝑣Even 𝑛𝑣



MQT in action: 
𝑑𝐼

𝑑𝑉
of topological system from S-matrix

• Physical pictures
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Electrically Detected 
Interferometry of Majorana 

Fermions in a TI
PRL 102, 216404 (2009)

Majorana Fermion Induced 
Resonant Andreev Reflection

PRL 103, 237001 (2009)



What left beyond today’s lecture

5/21/2025

• More about Landauer-Büttiker formalism

→ MQT is quantal: DC current = መ𝐼 , i.e., long-time average of current

→ Current shot noise is also available [M. Büttiker, PRB 46, 12485 (1992)]

→ Periodically driven quantum pumps can be dealt [M. Büttiker, (1990)]

• Beyond Landauer-Büttiker formalism: other methods for MQT

67

Formalisms Advantages Disadvantages

Landauer-Büttiker
Intuitive & quick calculations.

Finite voltage bias & temperature
Cannot deal with many-

body physics

Kubo’s linear 
response theory

Relatively easy & quick, while 
allowing many-body physics

Only allows physics around 
equilibrium states

Master equation
Allowing many-body physics & 

Nonequilibrium bias & finite temp.
Particularly useful at 

tunneling regime

Keldysh formalism All the above Not so easy for everyone


