RESEARCH
Young Scientist Training Program (YST)
주요사업내역을 안내해드립니다.
Athokpam Langlen Chanu
Athokpam Langlen Chanu
Transport dynamics of active particles in complex environment
Transport dynamics of active particles in complex environment
My research interest lies in complex systems. We investigate the roles of fluctuations and time delay in non-equilibrium reaction systems. We analyse the data generated by complex systems such as time series data of earthquakes or two dimensional spatial images for multifractality. Fractal dimension is an important measure of complexity. Recently, I am interested in complex biological systems. Complex diffusion dynamics is ubiquitous in complex biological systems such as living cells. In particular, I am interested in the transport dynamics of active particles in complex environment. We investigate anomalous diffusion dynamics of these active particles with stochastic modelling, statistical analysis and data science approaches.
054-279-8786
athokpam.chanu@apctp.org
548
Statistical Physics
Statistical Physics
Debangshu MUKHERJEE
Debangshu MUKHERJEE
Particle Physics/Quantum Field Theory
Particle Physics/Quantum Field Theory
My research primarily focuses on aspects of Matrix Models and their applications in understanding gauge theories and holography. In particular, concrete computations gives us a better understanding of holography in lower-dimensional setting where certain observables become exactly tractable. However, there is still a lot to learn even in lower dimensional gauge theory and gravity in their respective non-perturbative regime. Using the technology of resurgence, I intend to develop a systematic procedure to understand the non-perturbative effects of low dimensional gauge theories (such as 2D Yang-Mills), matrix models and also simple 2D gravitational theories (such as JT gravity). This will further shed light and provide is with valuable insights into the rich phase structure and free energy of various phases of these apparently simple looking theories. We will also attempt to identify the universal features which will further carry over to generic higher-dimensional theories.
054-279-1291
debangshu.mukherjee@apctp.org
531
Particle Physics/Quantum Field Theory
Particle Physics/Quantum Field Theory
Donny DWIPUTRA
Donny DWIPUTRA
Non-equilibrium quantum thermodynamics
Non-equilibrium quantum thermodynamics
Non-equilibrium thermodynamics of open quantum system is a powerful tool to study mesoscopic systems and quantum engines. I am interested in studying the thermodynamical aspect such as work statistics of a quantum system far from equilibrium and the relation to quantum informational quantities such as entanglement propagation. Recently, I have been investigating the quantum work of integrable and chaotic many-body systems. I plan to pursue these direction further to open systems as well as the application in quantum technology such as in quantum batteries. I approach the problem by employing both analytical and numerical treatments. Many of the proposed models can be realized in state-of-the-art experiments.
054-279-8785
donny.dwiputra@apctp.org
548
Condensed Matter Physics
Condensed Matter Physics
Dorin Weissman
Dorin Weissman
String theory, holographic QCD, higher spin theories
String theory, holographic QCD, higher spin theories
My main research interest is examining the relation between string theory and QCD, utilizing the two possible approaches of holographic QCD on one hand, and effective string theory on the other. In particular, I am currently working on computing scattering amplitudes of hadrons using these tools. Recently I have worked on the study of chaotic behaviour in string theory, and on constructing interacting supersymmetric higher spin gravity theories.
054-279-8790
dorin.weissman@apctp.org
548
Particle Physics/ Quantum Field Theory
Particle Physics/ Quantum Field Theory
Madhu MISHRA
Madhu MISHRA
Particle Physics/Quantum Field Theory
Particle Physics/Quantum Field Theory
The study of quantum gravity is put to the test in the context of black holes. The fact that black holes are thermodynamic objects with temperature, entropy, and the ability to emit thermal radiation—a discovery made by J. Bekenstein and S. Hawking—gives us a clear direction for understanding black holes and their microscopic quantum structure. My research focuses on investigating the thermodynamics of black holes as they emerge from string theory. By using deformed supergravities and the higher derivative supersymmetric actions provided by the superconformal calculus, I would like to analyze the issues from both macroscopic and microscopic perspectives. Using the quantum entropy formalism given by Ashoke Sen one accurately and methodically captures the quantum effects on black hole entropy, some of the approaches enable us to give string theory with precise tests as a contender for a theory of quantum gravity. In the future, I will continue to research distinct thermodynamic characteristics of extended objects or black holes in various ensembles.
054-279-8789
madhu.mishra@apctp.org
548
Particle Physics/Quantum Field Theory
Particle Physics/Quantum Field Theory
Mao Tian TAN
Mao Tian TAN
Quantum Information in Condensed Matter Physics and Field Theory
Quantum Information in Condensed Matter Physics and Field Theory
I am interested in applying ideas from quantum information, in particular entanglement entropy, to the study of condensed matter physics and quantum field theory, with an emphasis on non-equilibrium phenomena like quantum chaos and Floquet physics. In previous work, I have used information scrambling to characterize quantum chaos in many-body systems. Lately, I have turned my attention to the studying entanglement dynamics in spatially inhomogeneous quenches. Another direction I have been working on is the study of topological defects in Floquet systems. I plan to continue to explore these directions as well as other topics involving the application of quantum information concepts to condensed matter physics and quantum field theory.
054-279-1294
maotian.tan@apctp.org
530
Condensed Matter Physics
Condensed Matter Physics
Minjae KIM
Minjae KIM
Statistical Physics / Evolutionary game theory
Statistical Physics / Evolutionary game theory
Evolutionary game theory is a theory for explaining cooperation in populations in various fields, including social science and biology etc. I have been working in evolutionary game theory, focusing on computational inference and how uncertainty affects social cooperation. Another interest is social reputation's role in the emergence and stability of cooperative societies.
054-279-8676
minjae.kim@apctp.org
530
Statistical Physics
Statistical Physics
Seramika ARI WAHYOEDI
Seramika ARI WAHYOEDI
Emergence of Space from Loop Quantum Gravity
Emergence of Space from Loop Quantum Gravity
The search for quantum gravity as a quantization of General Relativity has been carried for a long time and recently has given promising results. The research had been evolved into various tracks, which extend from the perturbative to the non-perturbative approaches. Since gravity is perturbatively non-renormalizable, the non-perturbative approaches have the advantage to avoid the problem. They could be broadly categorized into two main branches: the string and non-string approach. One of the candidates of the non-string approach is loop quantum gravity (LQG), which is standardly- based on the rigorous Dirac quantization procedure [1]. As a consequence of the theory, the spectrum of the area and volume of space are discrete, for the case of pure gravity with no matter-coupling. This indicates the existence of the quanta of space, described by spin-networks: a lattice-graph labeled by spin representations of SU(2). The graph may contain loops, where the SU(2) holonomies, describing the intrinsic curvature of a finite region of the space, are located.
054-279-1298
seramika.wahyoedi@apctp.org
534
Particle Physics/ Quantum Field Theory
Particle Physics/ Quantum Field Theory
Shilpa JANGID
Shilpa JANGID
Dark matter constraints and the Order of Phase transition in beyond Standard Model scenarios
Dark matter constraints and the Order of Phase transition in beyond Standard Model scenarios
The Higgs boson discovery serves as the evidence for the importance of scalar in elecroweak symmetry breaking. However, the order of phase transition and the role of additional scalar or multiplets is yet to be discovered. My research focusses on fate of the electroweak vacuum and the order of phase transition. I am interested in studying the order of phase transition with the dark matter constraints from new packages as MadDM and GAMBIT. I am also interested in exploring the eﬀect of CP-violating pahses in explaining the baryon asymmetry of the Universe in beyond Standard Model scenarios.
054-279-8788
shilpa.jangid@apctp.org
548
Particle Physics/ Quantum Field Theory
Particle Physics/ Quantum Field Theory